
Chapter 15

System Theory and Analytical
Techniques

This chapter is complementary to Chapter 14 in that it provides tools and concepts
that can be used to develop better local planning methods (LPMs). Most of the
material was developed in the field of control theory, which focuses mainly on
characterizing the behavior of particular classes of systems, and controlling them
in the absence of obstacles. The two-point boundary value problem (BVP), which
was a frequent nuisance in Chapter 14, can be better understood and solved for
many systems by using the ideas of this chapter. Keep in mind that throughout
this chapter there are no obstacles. Although planning for this case was trivial in
Part II, the presence of differential constraints brings many challenges.

The style in this chapter is to provide a brief survey of concepts and techniques,
with the hope of inspiring further study in other textbooks and research literature.
Modern control theory is a vast and fascinating subject, of which only the surface
can be scratched in one chapter. Section 15.1 introduces stability and controllabil-
ity concepts, both of which characterize possible arrivals in a goal state. Stability
characterizes how the integral curves of a vector field behave around a goal point,
and controllability indicates whether an action trajectory exists that arrives at a
specified goal.

Section 15.2 revisits dynamic programming one last time. Here it becomes a
partial differential equation expressed in terms of the optimal cost-to-go function.
In some cases, it actually has a closed-form solution, as opposed to its main use
in computer science, which is to obtain algorithm constraints. The powerful Pon-
tryagin’s minimum principle, which can be derived from dynamic programming,
is also covered.

The remainder of the chapter is devoted to nonholonomic systems, which often
arise from underactuated mechanical systems. Section 15.3 expresses the shortest
paths between any pair of points for the Dubins car, the Reeds-Shepp car, and
a differential drive, all of which were introduced in Section 13.1.2. The paths
are a beautiful solution to the BVP and are particularly valuable as an LPM; for
example, some have been used in the plan-and-transform method of Section 14.6.2.

861

862 S. M. LaValle: Planning Algorithms

Section 15.4 addresses some basic properties of nonholonomic systems. The most
important issues are determining whether nonholonomic constraints are actually
integrable (which removes all ẋi variables) and characterizing reachable sets that
arise due to nonholonomic constraints. Section 15.5 attempts to do the same as
Section 15.3, but for more challenging nonholonomic systems. In these cases, the
BVP problem may not be solved optimally, and some methods may not even reach
the goal point precisely. Nevertheless, when applicable, they can be used to build
powerful LPMs in a sampling-based motion planning algorithm.

15.1 Basic System Properties

This section provides a brief overview of two fundamental concepts in control
theory: stability and controllability. Either can be considered as characterizing
how a goal state is reached. Stability usually involves feedback and may only
converge to the goal as time approaches infinity. Controllability assesses whether
an action trajectory exists that leads exactly to a specified goal state. In both
cases, there is no obstacle region in X.

15.1.1 Stability

The subject of stability addresses properties of a vector field with respect to a
given point. Let X denote a smooth manifold on which the vector field is defined;
X may be a C-space or a phase space. The given point is denoted as xG and
can be interpreted in motion planning applications as the goal state. Stability
characterizes how xG is approached from other states in X by integrating the
vector field.

The given vector field f is considered as a velocity field, which is represented
as

ẋ = f(x). (15.1)

This looks like a state transition equation that is missing actions. If a system of
the form ẋ = f(x, u) is given, then u can be fixed by designing a feedback plan
π : X → U . This yields ẋ = f(x, π(x)), which is a vector field on X without any
further dependency on actions. The dynamic programming approach in Section
14.5 computed such a solution. The process of designing a stable feedback plan is
referred to in control literature as feedback stabilization.

Equilibrium points and Lyapunov stability At the very least, it seems that
the state should remain fixed at xG, if it is reached. A point xG ∈ X is called
an equilibrium point (or fixed point) of the vector field f if and only if f(xG) = 0.
This does not, however, characterize how trajectories behave in the vicinity of xG.
Let xI ∈ X denote some initial state, and let x(t) refer to the state obtained at
time t after integrating the vector field f from xI = x(0).

15.1. BASIC SYSTEM PROPERTIES 863

xG

O1

O1

xI

xG

O2

(a) (b)

Figure 15.1: Lyapunov stability: (a) Choose any open set O1 that contains xG,
and (b) there exists some open set O2 from which trajectories will not be able to
escape O1. Note that convergence to xG is not required.

See Figure 15.1. An equilibrium point xG ∈ X is called Lyapunov stable if for
any open neighborhood1 O1 of xG there exists another open neighborhood O2 of
xG such that xI ∈ O2 implies that x(t) ∈ O1 for all t > 0. If X = Rn, then some
intuition can be obtained by using an equivalent definition that is expressed in
terms of the Euclidean metric. An equilibrium point xG ∈ Rn is called Lyapunov
stable if, for any t > 0, there exists some δ > 0 such that ‖xI − xG‖ < δ implies
that ‖x(t) − xG‖ < ǫ. This means that we can choose a ball around xG with a
radius as small as desired, and all future states will be trapped within this ball,
as long as they start within a potentially smaller ball of radius δ. If a single δ
can be chosen independently of every ǫ and x, then the equilibrium point is called
uniform Lyapunov stable.

Asymptotic stability Lyapunov stability is weak in that it does not even imply
that x(t) converges to xG as t approaches infinity. The states are only required
to hover around xG. Convergence requires a stronger notion called asymptotic
stability. A point xG is an asymptotically stable equilibrium point of f if:

1. It is a Lyapunov stable equilibrium point of f .

2. There exists some open neighborhood O of xG such that, for any xI ∈ O,
x(t) converges2 to xG as t approaches infinity.

For X = Rn, the second condition can be expressed as follows: There exists some
δ > 0 such that, for any xI ∈ X with ‖xI − xG‖ < δ, the state x(t) converges to
xG as t approaches infinity. It may seem strange that two requirements are needed
for asymptotic stability. The first one bounds the amount of wiggling room for
the integral curve, which is not captured by the second condition.

1An open neighborhood of a point x means an open set that contains x.
2This convergence can be evaluated using the metric ρ on X.

864 S. M. LaValle: Planning Algorithms

Asymptotic stability appears to be a reasonable requirement, but it does not
imply anything about how long it takes to converge. If xG is asymptotically stable
and there exist some m > 0 and α > 0 such that

‖x(t)− xG‖ ≤ me−αt‖xI − xG‖, (15.2)

then xG is also called exponentially stable. This provides a convenient way to
express the rate of convergence.

For use in motion planning applications, even exponential convergence may
not seem strong enough. This issue was discussed in Section 8.4.1. For example,
in practice, one usually prefers to reach xG in finite time, as opposed to only being
“reached” in the limit. There are two common fixes. One is to allow asymptotic
stability and declare the goal to be reached if the state arrives in some small,
predetermined ball around xG. In this case, the enlarged goal will always be
reached in finite time if xG is asymptotically stable. The other fix is to require
a stronger form of stability in which xG must be exactly reached in finite time.
To enable this, however, discontinuous vector fields such as the inward flow of
Figure 8.5b must be used. Most control theorists are appalled by this because
infinite energy is usually required to execute such trajectories. On the other hand,
discontinuous vector fields may be a suitable representation in some applications,
as mentioned in Chapter 8. Note that without feedback this issue does not seem as
important. The state trajectories designed in much of Chapter 14 were expected
to reach the goal in finite time. Without feedback there was no surrounding vector
field that was expected to maintain continuity or smoothness properties. Section
15.1.3 introduces controllability, which is based on actually arriving at the goal
in finite time, but it is also based on the existence of one trajectory for a given
system ẋ = f(x, u), as opposed to a family of trajectories for a given vector field
x = f(x).

Time-varying vector fields The stability notions expressed here are usually
introduced in the time-varying setting ẋ = f(x, t). Since the vast majority of
planning problems in this book are time-invariant, the presentation was confined
to time-invariant vector fields. There is, however, one fascinating peculiarity in
the topic of finding a feedback plan that stabilizes a system. Brockett’s condition
implies that for some time-invariant systems for which continuous, time-varying
feedback plans exist, there does not exist a continuous time-invariant feedback
plan [143, 156, 996]. This includes the class of driftless control systems, such as
the simple car and the unicycle. This implies that to maintain continuity of the
vector field, a time dependency must be introduced to allow the vector field to
vary as xG is approached! If continuity of the vector field is not important, then
this concern vanishes.

Domains of attraction The stability definitions given so far are often called
local because they are expressed in terms of a neighborhood of xG. Global versions
can also be defined by extending the neighborhood to all of X. An equilibrium

15.1. BASIC SYSTEM PROPERTIES 865

point is globally asymptotically stable if it is Lyapunov stable, and the integral
curve from any x0 ∈ X converges to xG as time approaches infinity. It may be
the case that only points in some proper subset of X converge to xG. The set of
all points in X that converge to xG is often called the domain of attraction of xG.
The funnels of Section 8.5.1 are based on domains of attraction. Also related is
the backward reachable set from Section 14.2.1. In that setting, action trajectories
were considered that lead to xG in finite time. For the domain of attraction only
asymptotic convergence to xG is assumed, and the vector field is given (there are
no actions to choose).

Limit cycles For some vector fields, states may be attracted into a limit cycle.
Rather than stabilizing to a point, the state trajectories converge to a loop path
in X. For example, they may converge to following a circle. This occurs in a wide
variety of mechanical systems in which oscillations are possible. Some of the basic
issues, along with several interesting examples for X = R2, are covered in [44].

15.1.2 Lyapunov Functions

Suppose a velocity field ẋ = f(x) is given along with an equilibrium point, xG.
Can the various forms of stability be easily determined? One of the most powerful
methods to prove stability is to construct a Lyapunov function. This will be
introduced shortly, but first some alternatives are briefly mentioned.

If f(x) is linear, which means that f(x) = Ax for some constant n× n matrix
A and X = Rn, then stability questions with respect to the origin, xG = 0, are
answered by finding the eigenvalues of A [192]. The state x = 0 is asymptotically
stable if and only if all eigenvalues of A have negative real parts. Consider the
scalar case, ẋ = ax, for which X = R and a is a constant. The solution to
this differential equation is x(t) = x(0) eat, which converges to 0 only if a < 0.
This can be easily extended to the case in which X = Rn and A is an n × n
diagonal matrix for which each diagonal entry (or eigenvalue) is negative. For
a general matrix, real or complex eigenvalues determine the stability (complex
eigenvalues cause oscillations). Conditions also exist for Lyapunov stability. Every
equilibrium state of ẋ = Ax is Lyapunov stable if the eigenvalues of A all have
nonpositive real parts, and the eigenvalues with zero real parts are distinct roots
of the characteristic polynomial of A.

If f(x) is nonlinear, then stability can sometimes be inferred by linearizing
f(x) about xG and performing linear stability analysis. In many cases, however,
this procedure is inconclusive (see Chapter 6 of [156]). Proving the stability of
a vector field is a challenging task for most nonlinear systems. One approach is
based on LaSalle’s invariance principle [39, 156, 585] and is particularly useful for
showing convergence to any of multiple goal states (see Section 5.4 of [846]). The
other major approach is to construct a Lyapunov function, which is used as an
intermediate tool to indirectly establish stability. If this method fails, then it still
may be possible to show stability using other means. Therefore, it is a sufficient

866 S. M. LaValle: Planning Algorithms

condition for stability, but not a necessary one.

Determining stability Suppose a velocity field ẋ = f(x) is given along with
an equilibrium point xG. Let φ denote a candidate Lyapunov function, which will
be used as an auxiliary device for establishing the stability of f . An appropriate φ
must be determined for the particular vector field f . This may be quite challenging
in itself, and the details are not covered here. In a sense, the procedure can be
characterized as “guess and verify,” which is the way that many solution techniques
for differential equations are described. If φ succeeds in establishing stability, then
it is promoted to being called a Lyapunov function for f .

It will be important to characterize how φ varies in the direction of flow induced
by f . This is measured by the Lie derivative,

φ̇(x) =
n∑

i=1

∂φ

∂xi
fi(x). (15.3)

This results in a new function φ̇(x), which indicates for each x the change in φ
along the direction of ẋ = f(x).

Several concepts are needed to determine stability. Let a function h : [0,∞) →
[0,∞) be called a hill if it is continuous, strictly increasing, and h(0) = 0. This
can be considered as a one-dimensional navigation function, which has a single
local minimum at the goal, 0. A function φ : X → [0,∞) is called locally positive
definite if there exists some open set O ⊆ X and a hill function h such that
φ(xG) = 0 and φ(x) ≥ h(‖x‖) for all x ∈ O. If O can be chosen as O = X, and if
X is bounded, then φ is called globally positive definite or just positive definite. In
some spaces this may not be possible due to the topology of X; such issues arose
when constructing navigation functions in Section 8.4.4. If X is unbounded, then
h must additionally approach infinity as ‖x‖ approaches infinity to yield a positive
definite φ [846]. For X = Rn, a quadratic form xTMx, for which M is a positive
definite matrix, is a globally positive definite function. This motivates the use of
quadratic forms in Lyapunov stability analysis.

The Lyapunov theorems can now be stated [156, 846]. Suppose that φ is
locally positive definite at xG. If there exists an open set O for which xG ∈ O, and
φ̇(x) ≤ 0 on all x ∈ O, then f is Lyapunov stable. If −φ̇(x) is also locally positive
definite on O, then f is asymptotically stable. If φ and −φ̇ are both globally
positive definite, then f is globally asymptotically stable.

Example 15.1 (Establishing Stability via Lyapunov Functions) LetX =
R. Let ẋ = f(x) = −x5, and we will attempt to show that x = 0 is stable. Let the
candidate Lyapunov function be φ(x) = 1

2
x2. The Lie derivative (15.3) produces

φ̇(x) = −x6. It is clear that φ and −φ̇ are both globally positive definite; hence,
0 is a global, asymptotically stable equilibrium point of f . �

15.1. BASIC SYSTEM PROPERTIES 867

Lyapunov functions in planning Lyapunov functions are closely related to
navigation functions and optimal cost-to-go functions in planning. In the optimal
discrete planning problem of Sections 2.3 and 8.2, the cost-to-go values can be
considered as a discrete Lyapunov function. By applying the computed actions,
a kind of discrete vector field can be imagined over the search graph. Each ap-
plied optimal action yields a reduction in the optimal cost-to-go value, until 0
is reached at the goal. Both the optimal cost-to-go and Lyapunov functions en-
sure that the trajectories do not become trapped in a local minimum. Lyapunov
functions are more general than cost-to-go functions because they do not require
optimality. They are more like navigation functions, as considered in Chapter 8.
The requirements for a discrete navigation function, as given in Section 8.2.2, are
very similar to the positive definite condition given in this section. Imagine that
the navigation function shown in Figure 8.3 is a discrete approximation to a Lya-
punov function over R2. In general, a Lyapunov function indicates some form of
distance to xG, although it may not be optimal. Nevertheless, it is based on mak-
ing monotonic progress toward xG. Therefore, it may serve as a distance function
in many sampling-based planning algorithms of Chapter 14. Since it respects the
differential constraints imposed by the system, it may provide a better indication
of how to make progress during planning in comparison to a Euclidean metric that
ignores these considerations. Lyapunov functions should be particularly valuable
in the RDT method of Section 14.4.3, which relies heavily on the distance function
over X.

15.1.3 Controllability

Now suppose that a system ẋ = f(x, u) is given on a smooth manifold X as defined
throughout Chapter 13 and used extensively in Chapter 14. The system can be
considered as a parameterized family of vector fields in which u is the parameter.
For stability, it was assumed that this parameter was fixed by a feedback plan
to obtain some ẋ = f(x). This section addresses controllability, which indicates
whether one state is reachable from another via the existence of an action tra-
jectory ũ. It may be helpful to review the reachable set definitions from Section
14.2.1.

Classical controllability Let U denote the set of permissible action trajectories
for the system, as considered in Section 14.1.1. By default, this is taken as any
ũ for which (14.1) can be integrated. A system ẋ = f(x, u) is called controllable
if for all xI , xG ∈ X, there exists a time t > 0 and action trajectory ũ ∈ U such
that upon integration from x(0) = xI , the result is x(t) = xG. Controllability can
alternatively be expressed in terms of the reachable sets of Section 14.2.1. The
system is controllable if xG ∈ R(xI ,U) for all xI , xG ∈ X.

A system is therefore controllable if a solution exists to any motion planning
problem in the absence of obstacles. In other words, a solution always exists to
the two-point boundary value problem (BVP).

868 S. M. LaValle: Planning Algorithms

Example 15.2 (Classical Controllability) All of the vehicle models in Section
13.1.2 are controllable. For example, in an infinitely large plane, the Dubins car
can be driven between any two configurations. Note, however, that if the plane
is restricted by obstacles, then this is not necessarily possible with the Dubins
car. As an example of a system that is not controllable, let X = R, ẋ = u, and
U = [0, 1]. In this case, the state cannot decrease. For example, there exists no
action trajectory that brings the state from xI = 1 to xG = 0. �

Many methods for determining controllability of a system are covered in stan-
dard textbooks on control theory. If the system is linear, as given by (13.37) with
dimensions m and n, then it is controllable if and only if the n×nm controllability
matrix

M = [B
... AB

... A2B
... · · · ... An−1B] (15.4)

has full rank [192]. This is called the Kalman rank condition [501]. If the system is
nonlinear, then the controllability matrix can be evaluated on a linearized version
of the system. Having full rank is sufficient to establish controllability from a
single point (see Proposition 11.2 in [846]). If the rank is not full, however, the
system may still be controllable. A fascinating property of some nonlinear systems
is that they may be able to produce motions in directions that do not seem to be
allowed at first. For example, the simple car given in Section 13.1.2 cannot slide
sideways; however, it is possible to wiggle the car sideways by performing parallel-
parking maneuvers. A method for determining the controllability of such systems
is covered in Section 15.4.

For fully actuated systems of the form q̈ = h(q, q̇, u), controllability can be
determined by converting the system into double-integrator form, as considered in
Section 14.4.1. Let the system be expressed as q̈ = u′, in which u′ ∈ U ′(q, q̇). If
U ′(q, q̇) contains an open neighborhood of the origin of Rn, and the same neigh-
borhood can be used for any x ∈ X, then the system is controllable. If a nonlinear
system is underactuated, as in the simple car, then controllability issues become
considerably more complicated. The next concept is suitable for such systems.

STLC: Controllability that handles obstacles The controllability concept
discussed so far has no concern for how far the trajectory travels in X before xG is
reached. This issue becomes particularly important for underactuated systems and
planning among obstacles. These concerns motivate a natural question: Is there a
form of controllability that is naturally suited for obstacles? It should declare that
if a state is reachable from another in the absence of differential constraints, then
it is also reachable with the given system ẋ = f(x, u). This can be expressed using
time-limited reachable sets. Let R(x,U , t) denote the set of all states reachable
in time less than or equal to t, starting from x. A system ẋ = f(x, u) is called
small-time locally controllable (STLC) from xI if there exists some t > 0 such that
xI ∈ int(R(xI ,U , t′)) for all t′ ∈ (0, t] (here, int denotes the interior of a set, as

15.1. BASIC SYSTEM PROPERTIES 869

xI

B(xI , ǫ)

int(R(xI ,U , t′))

Figure 15.2: If the system is STLC, then motions can be made in any direction,
in an arbitrarily small amount of time.

defined in Section 4.1.1). If the system ẋ = f(x, u) is STLC from every xI ∈ X,
then the whole system is said to be STLC.

Consider using this definition to answer the question above. Since int(R(xI ,U , t′))
is an open set, there must exist some small ǫ > 0 for which the open ball B(xI , ǫ)
is a strict subset of int(R(xI ,U , t′)). See Figure 15.2. Any point on the boundary
of B(xI , ǫ) can be reached, which means that a step of size ǫ can be taken in any
direction, even though differential constraints exist. With obstacles, however, we
have to be careful that the trajectory from xI to the surface of B(xI , ǫ) does not
wander too far away.

Suppose that there is an obstacle region Xobs, and a violation-free state trajec-
tory x̃ is given that terminates in xG at time tF and does not necessarily satisfy
a given system. If the system is STLC, then it is always possible to find an-
other trajectory, based on x̃, that satisfies the differential constraints. Apply the
plan-and-transform method of Section 14.6.2. Suppose that intervals for potential
replacement are chosen using binary recursive subdivision. Also suppose that an
LPM exists that computes that shortest trajectory between any pair of states;
this trajectory ignores obstacles but respects the differential constraints. Initially,
[0, tF] is replaced by a trajectory from the LPM, and if it is not violation-free, then
[0, tF] is subdivided into [0, tF/2] and [tF/2, tF], and replacement is attempted on
the smaller intervals. This idea can be applied recursively until eventually the
segments are small enough that they must be violation-free.

This final claim is implied by the STLC property. No matter how small the
intervals become, there must exist a replacement trajectory. If an interval is large,
then there may be sufficient time to wander far from the original trajectory. How-
ever, as the time interval decreases, there is not enough time to deviate far from
the original trajectory. (This discussion assumes mild conditions on f , such as
being Lipschitz.) Suppose that the trajectory is protected by a collision-free tube
of radius ǫ. Thus, all points along the trajectory are at least ǫ from the boundary
of Xfree. The time intervals can be chosen small enough to ensure that the tra-
jectory deviations are less than ǫ from the original trajectory. Therefore, STLC is
a very important property for a system to possess for planning in the presence of

870 S. M. LaValle: Planning Algorithms

obstacles. Section 15.4 covers some mathematical tools for determining whether a
nonlinear system is STLC.

A concept closely related to controllability is accessibility, which is only con-
cerned with the dimension of the reachable set. Let n be the dimension of X. If
there exists some t > 0 for which the dimension of R(xI ,U , t) is n, then the system
is called accessible from xI . Alternatively, this may be expressed as requiring that
int(R(xI ,U , t)) 6= ∅.

Example 15.3 (Accessibility) Recall the system from Section 13.1.3 in which
the state is trapped on a circle. In this case X = R2, and the state transition
equation was specified by ẋ = yu and ẏ = −xu. This system is not accessible
because the reachable sets have dimension one. �

A small-time version of accessibility can also be defined by requiring that there
exists some t such that int(R(xI ,U , t′)) 6= ∅ for all t′ ∈ (0, t]. Accessibility is
particularly important for systems with drift.

15.2 Continuous-Time Dynamic Programming

Dynamic programming has been a recurring theme throughout most of this book.
So far, it has always taken the form of computing optimal cost-to-go (or cost-to-
come) functions over some sequence of stages. Both value iteration and Dijkstra-
like algorithms have emerged. In computer science, dynamic programming is a
fundamental insight in the development of algorithms that compute optimal so-
lutions to problems. In its original form, however, dynamic programming was
developed to solve the optimal control problem [84]. In this setting, a discrete
set of stages is replaced by a continuum of stages, known as time. The dy-
namic programming recurrence is instead a partial differential equation, called
the Hamilton-Jacobi-Bellman (HJB) equation. The HJB equation can be solved
using numerical algorithms; however, in some cases, it can be solved analytically.3

Section 15.2.2 briefly describes an analytical solution in the case of linear systems.
Section 15.2.3 covers Pontryagin’s minimum principle, which can be derived from
the dynamic programming principle, and generalizes the optimization performed
in Hamiltonian mechanics (recall Section 13.4.4).

15.2.1 Hamilton-Jacobi-Bellman Equation

The HJB equation is a central result in optimal control theory. Many other prin-
ciples and design techniques follow from the HJB equation, which itself is just a
statement of the dynamic programming principle in continuous time. A proper
derivation of all forms of the HJB equation would be beyond the scope of this

3It is often surprising to computer scientists that dynamic programming in this case does not
yield an algorithm. It instead yields a closed-form solution to the problem.

15.2. CONTINUOUS-TIME DYNAMIC PROGRAMMING 871

book. Instead, a time-invariant formulation that is most relevant to planning will
be given here. Also, an informal derivation will follow, based in part on [95].

15.2.1.1 The discrete case

Before entering the continuous realm, the concepts will first be described for dis-
crete planning, which is often easier to understand. Recall from Section 2.3 that
if X, U , and the stages are discrete, then optimal planning can be performed by
using value iteration or Dijkstra’s algorithm on the search graph. The stationary,
optimal cost-to-go function G∗ can be used as a navigation function that encodes
the optimal feedback plan. This was suggested in Section 8.2.2, and an example
was shown in Figure 8.3.

Suppose that G∗ has been computed under Formulation 8.1 (or Formulation
2.3). Let the state transition equation be denoted as

x′ = fd(x, u). (15.5)

The dynamic programming recurrence for G∗ is

G∗(x) = min
u∈U(x)

{l(x, u) +G∗(x′)} , (15.6)

which may already be considered as a discrete form of the Hamilton-Jacobi-
Bellman equation. To gain some insights into the coming concepts, however, some
further manipulations will be performed.

Let u∗ denote the optimal action that is applied in the min of (15.6). Imagine
that u∗ is hypothesized as the optimal action but needs to be tested in (15.6) to
make sure. If it is truly optimal, then

G∗(x) = l(x, u∗) +G∗(fd(x, u
∗)). (15.7)

This can already be considered as a discrete form of the Pontryagin minimum
principle, which will appear in Section 15.2.3. By rearranging terms, a nice inter-
pretation is obtained:

G∗(fd(x, u
∗))−G∗(x) = −l(x, u∗). (15.8)

In a single stage, the optimal cost-to-go drops by l(x, u∗) when G∗ is used as a
navigation function (multiply (15.8) by −1). The optimal single-stage cost is re-
vealed precisely when taking one step toward the goal along the optimal path. This
incremental change in the cost-to-go function while moving in the best direction
forms the basis of both the HJB equation and the minimum principle.

15.2.1.2 The continuous case

Now consider adapting to the continuous case. Suppose X and U are both con-
tinuous, but discrete stages remain, and verify that (15.5) to (15.8) still hold true.

872 S. M. LaValle: Planning Algorithms

Their present form can be used for any system that is approximated by discrete
stages. Suppose that the discrete-time model of Section 14.2.2 is used to approxi-
mate a system ẋ = f(x, u) on a state space X that is a smooth manifold. In that
model, U was discretized to Ud, but here it will be left in its original form. Let ∆t
represent the time discretization.

The HJB equation will be obtained by approximating (15.6) with the discrete-
time model and letting ∆t approach zero. The arguments here are very informal;
see [95, 570, 912] for more details. Using discrete-time approximation, the dynamic
programming recurrence is

G∗(x) = min
u∈U(x)

{ld(x, u) +G∗(x′)} , (15.9)

in which ld is a discrete-time approximation to the cost that accumulates over
stage k and is given as

ld(x, u) ≈ l(x, u)∆t. (15.10)

It is assumed that as ∆t approaches zero, the total discretized cost converges to
the integrated cost of the continuous-time formulation.

Using the linear part of a Taylor series expansion about x, the term G∗(x′) can
be approximated as

G∗(x′) ≈ G∗(x) +
n∑

i=1

∂G∗

∂xi
fi(x, u)∆t. (15.11)

This approximates G∗(x′) by its tangent plane at x. Substitution of (15.11) and
(15.10) into (15.9) yields

G∗(x) ≈ min
u∈U(x)

{

l(x, u)∆t+G∗(x) +
n∑

i=1

∂G∗

∂xi
fi(x, u)∆t

}

. (15.12)

Subtracting G∗(x) from both sides of (15.12) yields

min
u∈U(x)

{

l(x, u)∆t+
n∑

i=1

∂G∗

∂xi
fi(x, u)∆t

}

≈ 0. (15.13)

Taking the limit as ∆t approaches zero and then dividing by ∆t yields the HJB
equation:

min
u∈U(x)

{

l(x, u) +
n∑

i=1

∂G∗

∂xi
fi(x, u)

}

= 0. (15.14)

Compare the HJB equation to (15.6) for the discrete-time case. Both indicate
how the cost changes when moving in the best direction. Substitution of u∗ for
the optimal action into (15.14) yields

n∑

i=1

∂G∗

∂xi
fi(x, u

∗) = −l(x, u∗). (15.15)

15.2. CONTINUOUS-TIME DYNAMIC PROGRAMMING 873

This is just the continuous-time version of (15.8). In the current setting, the left
side indicates the derivative of the cost-to-go function along the direction obtained
by applying the optimal action from x.

The HJB equation, together with a boundary condition that specifies the final-
stage cost, sufficiently characterizes the optimal solution to the planning problem.
Since it is expressed over the whole state space, solutions to the HJB equation
yield optimal feedback plans. Unfortunately, the HJB equation cannot be solved
analytically in most settings. Therefore, numerical techniques, such as the value
iteration method of Section 14.5, must be employed. There is, however, an im-
portant class of problems that can be directly solved using the HJB equation; see
Section 15.2.2.

15.2.1.3 Variants of the HJB equation

Several versions of the HJB equation exist. The one presented in (15.14) is suitable
for planning problems such as those expressed in Chapter 14. If the cost-to-go
functions are time-dependent, then the HJB equation is

min
u∈U(x)

{

l(x, u, t) +
∂G∗

∂t
+

n∑

i=1

∂G∗

∂xi
fi(x, u, t)

}

= 0, (15.16)

and G∗ is a function of both x and t. This can be derived again using a Taylor
expansion, but with x and t treated as the variables. Most textbooks on optimal
control theory present the HJB equation in this form or in a slightly different form
by pulling ∂G∗/∂t outside of the min and moving it to the right of the equation:

min
u∈U(x)

{

l(x, u, t) +
n∑

i=1

∂G∗

∂xi
fi(x, u, t)

}

= −∂G∗

∂t
. (15.17)

In differential game theory, the HJB equation generalizes to the Hamilton-
Jacobi-Isaacs (HJI) equations [59, 477]. Suppose that the system is given as
(13.203) and a zero-sum game is defined using a cost term of the form l(x, u, v, t).
The HJI equations characterize saddle equilibria and are given as

min
u∈U(x)

max
v∈V (x)

{

l(x, u, v, t) +
∂G∗

∂t
+

n∑

i=1

∂G∗

∂xi
fi(x, u, v, t)

}

= 0 (15.18)

and

max
v∈V (x)

min
u∈U(x)

{

l(x, u, v, t) +
∂G∗

∂t
+

n∑

i=1

∂G∗

∂xi
fi(x, u, v, t)

}

= 0. (15.19)

There are clear similarities between these equations and (15.16). Also, the swap-
ping of the min and max operators resembles the definition of saddle points in
Section 9.3.

874 S. M. LaValle: Planning Algorithms

15.2.2 Linear-Quadratic Problems

This section briefly describes a problem for which the HJB equation can be directly
solved to yield a closed-form expression, as opposed to an algorithm that computes
numerical approximations. Suppose that a linear system is given by (13.37), which
requires specifying the matrices A and B. The task is to design a feedback plan
that asymptotically stabilizes the system from any initial state. This is an infinite-
horizon problem, and no termination action is applied.

An optimal solution is requested with respect to a cost functional based on
matrix quadratic forms. Let Q be a nonnegative definite4 n×n matrix, and let R
be a positive definite n× n matrix. The quadratic cost functional is defined as

L(x̃, ũ) =
1

2

∫ ∞

0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt. (15.20)

To guarantee that a solution exists that yields finite cost, several assumptions must
be made on the matrices. The pair (A,B) must be stabilizable, and (A,Q) must
be detectable; see [28] for specific conditions and a full derivation of the solution
presented here.

Although it is not done here, the HJB equation can be used to derive the
algebraic Riccati equation,

SA+ ATS − SBR−1BTS +Q = 0, (15.21)

in which all matrices except S were already given. Methods exist that solve for S,
which is a unique solution in the space of nonnegative definite n× n matrices.

The linear vector field

ẋ =
(
A−BR−1BTS

)
x (15.22)

is asymptotically stable (the real parts of all eigenvalues of the matrix are nega-
tive). This vector field is obtained if u is selected using a feedback plan π defined
as

π(x) = −R−1BTSx. (15.23)

The feedback plan π is in fact optimal, and the optimal cost-to-go is simply

G∗(x) = 1
2
xTSx. (15.24)

Thus, for linear systems with quadratic cost, an elegant solution exists without
resorting to numerical approximations. Unfortunately, the solution techniques do
not generalize to nonlinear systems or linear systems among obstacles. Hence, the
planning methods of Chapter 14 are justified.

However, many variations and extensions of the solutions given here do exist,
but only for other problems that are expressed as linear systems with quadratic

4Nonnegative definite means xTQx ≥ 0 for all x ∈ R, and positive definite means xTRx > 0
for all x ∈ Rn.

15.2. CONTINUOUS-TIME DYNAMIC PROGRAMMING 875

cost. In every case, some variant of Riccati equations is obtained by application
of the HJB equation. Solutions to time-varying systems are derived in [28]. If
there is Gaussian uncertainty in predictability, then the linear-quadratic Gaussian
(LQG) problem is obtained [564]. Linear-quadratic problems and solutions even
exist for differential games of the form (13.204) [59].

15.2.3 Pontryagin’s Minimum Principle

Pontryagin’s minimum principle5 is closely related to the HJB equation and pro-
vides conditions that an optimal trajectory must satisfy. Keep in mind, however,
that the minimum principle provides necessary conditions, but not sufficient con-
ditions, for optimality. In contrast, the HJB equation offered sufficient conditions.
Using the minimum principle alone, one is often not able to conclude that a tra-
jectory is optimal. In some cases, however, it is quite useful for finding candidate
optimal trajectories. Any trajectory that fails to satisfy the minimum principle
cannot be optimal.

To understand the minimum principle, we first return to the case of discrete
planning. As mentioned previously, the minimum principle is essentially given by
(15.7). This can be considered as a specialization of the HJB equation to the
special case of applying the optimal action u∗. This causes the min to disappear,
but along with it the global properties of the HJB equation also vanish. The
minimum principle expresses conditions along the optimal trajectory, as opposed
to the cost-to-go function over the whole state space. Therefore, it can at best
assure local optimality in the space of possible trajectories.

The minimum principle for the continuous case is essentially given by (15.15),
which is the continuous-time counterpart to (15.7). However, it is usually ex-
pressed in terms of adjoint variables and a Hamiltonian function, in the spirit of
Hamiltonian mechanics from Section 13.4.4.

Let λ denote an n-dimensional vector of adjoint variables, which are defined as

λi =
∂G∗

∂xi
. (15.25)

The Hamiltonian function is defined as

H(x, u, λ) = l(x, u) +
n∑

i=1

λifi(x, u), (15.26)

which is exactly the expression inside of the min of the HJB equation (15.14) after
using the adjoint variable definition from (15.25). This can be compared to the
Hamiltonian given by (13.192) in Section 13.4.4 (p from that context becomes λ

5This is often called Pontryagin’s maximum principle, because Pontryagin originally defined it
as a maximization [801]. The Hamiltonian used in most control literature is negated with respect
to Pontryagin’s Hamiltonian; therefore, it becomes minimized. Both names are in common use.

876 S. M. LaValle: Planning Algorithms

here). The two are not exactly the same, but they both are motivated by the same
basic principles.

Under the execution of the optimal action trajectory ũ∗, the HJB equation
implies that

H(x(t), u∗(t), λ(t)) = 0 (15.27)

for all t ≥ 0. This is just an alternative way to express (15.15). The fact that H
remains constant appears very much like a conservation law, which was the basis
of Hamiltonian mechanics in Section 13.4.4. The use of the Hamiltonian in the
minimum principle is more general.

Using the HJB equation (15.14), the optimal action is given by

u∗(t) = argmin
u∈U(x)

{H(x(t), u(t), λ(t))} . (15.28)

In other words, the Hamiltonian is minimized precisely at u(t) = u∗(t).
The missing piece of information so far is how λ evolves over time. It turns

out that a system of the form

λ̇ = g(x, λ, u∗) (15.29)

can be derived by differentiating the Hamiltonian (or, equivalently, the HJB equa-
tion) with respect to x. This yields two coupled systems, ẋ = f(x, u∗) and (15.29).
These can in fact be interpreted as a single system in a 2n-dimensional phase space,
in which each phase vector is (x, λ). This is analogous to the phase interpretation
in Section 13.4.4 for Hamiltonian mechanics, which results in (13.198).

Remember that λ is defined in (15.25) just to keep track of the change in G∗. It
would be helpful to have an explicit form for (15.29). Suppose that u∗ is selected
by a feedback plan to yield u∗ = π∗(x). In this case, the Hamiltonian can be
interpreted as a function of only x and λ. Under this assumption, differentiating
the Hamiltonian (15.26) with respect to xi yields

∂l(x, π∗(x))

∂xi
+

n∑

j=1

∂λj
∂xi

fj(x, π
∗(x)) +

n∑

j=1

λj
∂fj(x, π

∗(x))

∂xi
. (15.30)

This validity of this differentiation requires a technical lemma that asserts that
the derivatives of π(x) can be disregarded (see Lemma 3.3.1 of [95]). Also, it will
be assumed that U is convex in the arguments that follow, even though there exist
proofs of the minimum principle that do not require this.

The second term in (15.30) is actually λ̇i, although it is hard to see at first.
The total differential of λi with respect to the state is

dλi =
n∑

j=1

∂λi
∂xj

dxj. (15.31)

Dividing both sides by dt yields

dλi
dt

=
n∑

j=1

∂λi
∂xj

dxj
dt

=
n∑

j=1

∂λi
∂xj

ẋj. (15.32)

15.2. CONTINUOUS-TIME DYNAMIC PROGRAMMING 877

Each ẋj is given by the state transition equation: ẋj = fj(x, π
∗(x)). Therefore,

λ̇i =
dλi
dt

=
d

dt

∂G∗

∂xi
=

n∑

j=1

∂λi
∂xj

fj(x, π
∗(x)). (15.33)

Substituting (15.33) into (15.30) and setting the equation to zero (because the
Hamiltonian is zero along the optimal trajectory) yields

∂l(x, π∗(x))

∂xi
+ λ̇i +

n∑

j=1

λj
∂fj(x, π

∗(x))

∂xi
= 0. (15.34)

Solving for λ̇i yields

λ̇i = −∂l(x, π∗(x))

∂xi
−

n∑

j=1

λj
∂fj(x, π

∗(x))

∂xi
. (15.35)

Conveniently, this is the same as

λ̇i = −∂H

∂xi
, (15.36)

which yields the adjoint transition equation, as desired.
The transition equations given by ẋ = f(x, u) and (15.36) specify the evolution

of the system given by the minimum principle. These are analogous to Hamilton’s
equations (13.198), which were given in Section 13.4.4. The generalized momentum
in that context becomes the adjoint variables here.

When applying the minimum principle, it is usually required to use the fact
that the optimal action at all times must satisfy (15.28). Often, this is equivalently
expressed as

H(x(t), u∗(t), λ(t)) ≤ H(x(t), u(t), λ(t)), (15.37)

which indicates that the Hamiltonian increases or remains the same whenever
deviation from the optimal action occurs (the Hamiltonian cannot decrease).

Example 15.4 (Optimal Planning for the Double Integrator) Recall the
double integrator system from Example 13.3. Let q̈ = u, C = R, and U =
[−1, 1]∪ {uT}. Imagine a particle that moves in R. The action is a force in either
direction and has at most unit magnitude. The state transition equation is ẋ1 = x2

and ẋ2 = u, and X = R2. The task is to perform optimal motion planning between
any two states xI , xG ∈ X. From a given initial state xI , a goal state xG must be
reached in minimum time. The cost functional is defined in this case as l(x, u) = 1
for all x ∈ X and and u ∈ U such that u 6= uT .

Using (15.26), the Hamiltonian is defined as

H(x, u, λ) = 1 + λ1x2 + λ2u. (15.38)

878 S. M. LaValle: Planning Algorithms

The optimal action trajectory is obtained from (15.28) as

u∗(t) = argmin
u∈[−1,1]

{1 + λ1(t)x2(t) + λ2(t)u(t)} . (15.39)

If λ2(t) < 0, then u∗(t) = 1, and if λ2(t) > 0, then u∗(t) = −1. Thus, the action
may be assigned as u∗(t) = −sgn(λ2(t)), if λ2(t) 6= 0. Note that these two cases
are the “bangs” of the bang-bang control from Section 14.6.3, and they are also
the extremal actions used for the planning algorithm in Section 14.4.1. At the
boundary case in which λ2(t) = 0, any action in [−1, 1] may be chosen.

The only remaining task is to determine the values of the adjoint variables
over time. The adjoint transition equation is obtained from (15.36) as λ̇1 = 0 and
λ̇2 = −λ1. The solutions are λ1(t) = c1 and λ2(t) = c2−c1t, in which c1 and c2 are
constants that can be determined at t = 0 from (15.38) and (15.39). The optimal
action depends only on the sign of λ2(t). Since its solution is the equation of a
line, it can change signs at most once. Therefore, there are four possible kinds of
solutions, depending on the particular xI and xG:

1. Pure acceleration, u∗(t) = 1, is applied for all time.

2. Pure deceleration, u∗(t) = −1, is applied for all time.

3. Pure acceleration is applied up to some time t′ and is followed immediately
by pure deceleration until the final time.

4. Pure deceleration is applied up to some time t′ followed immediately by pure
acceleration until the final time.

For the last two cases, t′ is often called the switching time, at which point a dis-
continuity in ũ∗ occurs. These two are bang-bang solutions, which were described
in Section 14.6.3. �

This was one of the simplest possible examples, and the optimal solution was
easily found because the adjoint variables are linear functions of time. Section 15.3
covers optimal solutions for the Dubins car, the Reeds-Shepp car, and the differ-
ential drive, all of which can be established using the minimum principle combined
with some geometric arguments. As systems become more complicated, such anal-
ysis is unfortunately too difficult. In these cases, sampling-based methods, such
as those of Chapter 14, must be used to determine optimal trajectories.

One common complication is the existence of singular arcs along the solution
trajectory. These correspond to a degeneracy in H with respect to u over some
duration of time. This could be caused, for example, by having H independent of
u. In Example 15.4, H became independent of u when λ2(t) = 0; however, there
was no singular arc because this could only occur for an instant of time. If the
duration had been longer, then there would be an interval of time over which the
optimal action could not be determined. In general, if the Hessian (recall definition

15.2. CONTINUOUS-TIME DYNAMIC PROGRAMMING 879

from (8.48)) of H with respect to u is a positive definite matrix, then there are no
singular arcs (this is often called the Legendre-Clebsch condition). The minimum
principle in this case provides a sufficient condition for local optimality in the
space of possible state trajectories. If the Hessian is not positive definite for some
interval [t1, t2] with t1 < t2, then additional information is needed to determine
the optimal trajectory over the singular arc from x∗(t1) to x∗(t2).

Note that all of this analysis ignores the existence of obstacles. There is noth-
ing to prevent the solutions from attempting to enter an obstacle region. The
action set U(x) and cost l(x, u) can be adjusted to account for obstacles; however,
determining an optimal solution from the minimum principle becomes virtually
impossible, except in some special cases.

There are other ways to derive the minimum principle. Recall from Section
13.4.4 that Hamilton’s equations can be derived from the Euler-Lagrange equa-
tion. It should not be surprising that the minimum principle can also be derived
using variational principles [95, 789]. The minimum principle can also be inter-
preted as a form of constrained optimization. This yields the interpretation of
λ as Lagrange multipliers. A very illuminating reference for further study of the
minimum principle is Pontryagin’s original works [801].

Time optimality Interesting interpretations of the minimum principle exist for
the case of optimizing the time to reach the goal [424, 903]. In this case, l(x, u) = 1
in (15.26), and the cost term can be ignored. For the remaining portion, let λ be
defined as

λi = −∂G∗

∂xi
, (15.40)

instead of using (15.25). In this case, the Hamiltonian can be expressed as

H(x, u, λ) =
n∑

i=1

λifi(x, u) =

〈

−∂G∗

∂x
, f(x, u)

〉

, (15.41)

which is an inner product between f(x, u) and the negative gradient of G∗. Using
(15.40), the Hamiltonian should be maximized instead of minimized (this is equiv-
alent to Pontryagin’s original formulation [801]). An inner product of two vectors
increases as their directions become closer to parallel. Optimizing (15.41) amounts
to selecting u so that ẋ is as close as possible to the direction of steepest descent
of G∗. This is nicely interpreted by considering how the boundary of the reachable
set R(x0,U , t) propagates through X. By definition, the points on ∂R(x0,U , t)
must correspond to time-optimal trajectories. Furthermore, ∂R(x0,U , t) can be
interpreted as a propagating wavefront that is perpendicular to −∂G∗/∂x. The
minimum principle simply indicates that u should be chosen so that ẋ points into
the propagating boundary, as close to being orthogonal as possible [424].

880 S. M. LaValle: Planning Algorithms

15.3 Optimal Paths for Some Wheeled Vehicles

For some of the wheeled vehicle models of Section 13.1.2, the shortest path between
any pair of configurations was completely characterized. In this section, X = C =
R2 × S1, which corresponds to the C-space for a rigid body in the plane. For
each model, the path length in C must be carefully defined to retain some physical
significance in the world W = R2 in which the vehicle travels. For example, in
the case of the simple car, the distance in W traveled by the center of the rear
axle will be optimized. If the coordinate frame is assigned appropriately, this
corresponds to optimizing the path length in the R2 subspace of C while ignoring
orientation. Keep in mind that the solutions given in this section depend heavily
on the particular cost functional that is optimized.

Sections 15.3.1–15.3.3 cover the shortest paths for the Dubins car, the Reeds-
Shepp car, and a differential-drive model, respectively. In each case, the paths
can be elegantly described as combinations of a few motion primitives. Due to
symmetries, it is sufficient to describe the optimal paths from a fixed initial con-
figuration qI = (0, 0, 0) to any goal configuration qG ∈ C. If the optimal path is
desired from a different qI ∈ C, then it can be recovered from rigid-body transfor-
mations applied to qI and qG (the whole path can easily be translated and rotated
without effecting its optimality, provided that qG does not move relative to qI).
Alternatively, it may be convenient to fix qG and consider optimal paths from all
possible qI .

Once qI (or qG) is fixed, C can be partitioned into cells that correspond to sets
of placements for qG (or qI). Inside of each cell, the optimal curve is described by
a fixed sequence of parameterized motion primitives. For example, one cell for the
Dubins car indicates “turn left,” “go straight,” and then “turn right.” The curves
are ideally suited for use as an LPM in a sampling-based planning algorithm.

This section mainly focuses on presenting the solutions. Establishing their cor-
rectness is quite involved and is based in part on Pontryagin’s minimum principle
from Section 15.2.3. Other important components are Filipov’s existence theorem
(see [903]) and Boltyanskii’s sufficient condition for optimality (which also justi-
fies dynamic programming) [130]. Substantially more details and justifications of
the curves presented in Sections 15.3.1 and 15.3.2 appear in [903, 904, 923]. The
corresponding details for the curves of Section 15.3.3 appear in [64].

15.3.1 Dubins Curves

Recall the Dubins version of the simple car given in Section 13.1.2. The system
was specified in (13.15). It is assumed here that the car moves at constant forward
speed, us = 1. The other important constraint is the maximum steering angle
φmax, which results in a minimum turning radius ρmin. As the car travels, consider
the length of the curve in W = R2 traced out by a pencil attached to the center
of the rear axle. This is the location of the body-frame origin in Figure 13.1. The
task is to minimize the length of this curve as the car travels between any qI and

15.3. OPTIMAL PATHS FOR SOME WHEELED VEHICLES 881

Symbol Steering: u

S 0
L 1
R -1

Figure 15.3: The three motion primitives from which all optimal curves for the
Dubins car can be constructed.

qG. Due to ρmin, this can be considered as a bounded-curvature shortest-path
problem. If ρmin = 0, then there is no curvature bound, and the shortest path
follows a straight line in R2. In terms of a cost functional of the form (8.39), the
criterion to optimize is

L(q̃, ũ) =

∫ tF

0

√

ẋ(t)2 + ẏ(t)2dt, (15.42)

in which tF is the time at which qG is reached, and a configuration is denoted as
q = (x, y, θ). If qG is not reached, then it is assumed that L(q̃, ũ) = ∞.

Since the speed is constant, the system can be simplified to

ẋ = cos θ

ẏ = sin θ

θ̇ = u,

(15.43)

in which u is chosen from the interval U = [− tanφmax, tanφmax]. This implies
that (15.42) reduces to optimizing the time tF to reach qG because the integrand
reduces to 1. For simplicity, assume that tanφ = 1. The following results also
hold for any φmax ∈ (0, π/2).

It was shown in [294] that between any two configurations, the shortest path
for the Dubins car can always be expressed as a combination of no more than
three motion primitives. Each motion primitive applies a constant action over an
interval of time. Furthermore, the only actions that are needed to traverse the
shortest paths are u ∈ {−1, 0, 1}. The primitives and their associated symbols are
shown in Figure 15.3. The S primitive drives the car straight ahead. The L and
R primitives turn as sharply as possible to the left and right, respectively. Using
these symbols, each possible kind of shortest path can be designated as a sequence
of three symbols that corresponds to the order in which the primitives are applied.
Let such a sequence be called a word . There is no need to have two consecutive
primitives of the same kind because they can be merged into one. Under this
observation, ten possible words of length three are possible. Dubins showed that
only these six words are possibly optimal:

{LRL, RLR, LSL, LSR, RSL, RSR}. (15.44)

The shortest path between any two configurations can always be characterized by
one of these words. These are called the Dubins curves.

882 S. M. LaValle: Planning Algorithms

α

γ

d
Rα

Sd

Lγ

qGqI
α

γ

Rγ

Rα

qG
qI

Lβ

β

RαSdLγ RαLβRγ

Figure 15.4: The trajectories for two words are shown in W = R2.

To be more precise, the duration of each primitive should also be specified.
For L or R, let a subscript denote the total amount of rotation that accumulates
during the application of the primitive. For S, let a subscript denote the total
distance traveled. Using such subscripts, the Dubins curves can be more precisely
characterized as

{LαRβ Lγ, Rα Lβ Rγ, Lα Sd Lγ, Lα SdRγ, Rα Sd Lγ , Rα SdRγ}, (15.45)

in which α, γ ∈ [0, 2π), β ∈ (π, 2π), and d ≥ 0. Figure 15.4 illustrates two cases.
Note that β must be greater than π (if it is less, then some other word becomes
optimal).

It will be convenient to invent a compressed form of the words to group together
paths that are qualitatively similar. This will be particularly valuable when Reeds-
Shepp curves are introduced in Section 15.3.2 because there are 46 of them, as
opposed to 6 Dubins curves. Let C denote a symbol that means “curve,” and
represents either R or L. Using C, the six words in (15.44) can be compressed to
only two base words:

{CCC, CSC}. (15.46)

In this compressed form, remember that two consecutive Cs must be filled in by
distinct turns (RR and LL are not allowed as subsequences). In compressed form,
the base words can be specified more precisely as

{CαCβ Cγ, Cα SdCγ}, (15.47)

in which α, γ ∈ [0, 2π), β ∈ (π, 2π), and d ≥ 0.
Powerful information has been provided so far for characterizing the shortest

paths; however, for a given qI and qG, two problems remain:

1. Which of the six words in (15.45) yields the shortest path between qI and
qG?

15.3. OPTIMAL PATHS FOR SOME WHEELED VEHICLES 883

y

x

LSR RSL

RSL LSR

LSL

RSR

LRL

RLR

Figure 15.5: A slice at θ = π of the partition into word-invariant cells for the
Dubins car. The circle is centered on the origin.

2. What are the values of the subscripts, α, β, γ, and d for the particular word?

To use the Dubins curves as an LPM, these questions should be answered effi-
ciently. One simple approach is to try all six words and choose the shortest one.
The parameters for each word can be determined by tracing out minimum-radius
circles from qI and qG, as shown in Figure 14.23. Another way is to use the precise
characterization of the regions over which a particular word is optimal. Suppose
that qG is fixed at (0, 0, 0). Based on the possible placements of qI , the C-space
can be partitioned into cells for which the same word is optimal. The cells and
their boundaries are given precisely in [903]. As an example, a slice of the cell
decomposition for θ = π is shown in Figure 15.5.

In addition to use as an LPM, the resulting cost of the shortest path may be
a useful distance function in many sampling-based planning algorithms. This is
sometimes called the Dubins metric (it is not, however, a true metric because it
violates the symmetry axiom). This can be considered as the optimal cost-to-go
G∗. It could have been computed approximately using the dynamic programming
approach in Section 14.5; however, thanks to careful analysis, the exact values are
known. One interesting property of the Dubins metric is that it is discontinuous;
see Figure 15.6. Compare the cost of traveling π/2 using the R primitive to the
cost of traveling to a nearby point that would require a smaller turning radius
than that achieved by the R primitive. The required action does not exist in U ,
and the point will have to be reached by a longer sequence of primitives. The
discontinuity in G∗ is enabled by the fact that the Dubins car fails to possess the
STLC property from Section 15.1.3. For STLC systems, G∗ is continuous.

884 S. M. LaValle: Planning Algorithms

Figure 15.6: Level sets of the Dubins metric are shown in the plane. Along two
circular arcs, the metric is discontinuous (courtesy of Philippe Souères).

15.3.2 Reeds-Shepp Curves

Now consider the shortest paths of the Reeds-Shepp car. The only difference in
comparison to the Dubins car is that travel in the reverse direction is now allowed.
The same criterion (15.42) is optimized, which is the distance traveled by the
center of the rear axle. The shortest path is equivalent to the path that takes
minimum time, as for the Dubins car. The simplified system in (15.43) can be
enhanced to obtain

ẋ = u1 cos θ

ẏ = u1 sin θ

θ̇ = u1u2,

(15.48)

in which u1 ∈ {−1, 1} and u2 ∈ [− tanφmax, tanφmax]. The first action variable,
u1, selects the gear, which is forward (u1 = 1) or reverse (u1 = −1). Once again,
assume for simplicity that u2 ∈ [−1, 1]. The results stated here apply to any
φmax ∈ (0, π/2).

It was shown in [814] that there are no more than 48 different words that
describe the shortest paths for the Reeds-Shepp car. The base word notation from
Section 15.3.1 can be extended to nicely express the shortest paths. A new symbol,
“ | ”, is used in the words to indicate that the “gear” is shifted from forward to
reverse or reverse to forward. Reeds and Shepp showed that the shortest path for
their car can always be expressed with one of the following base words:

{C|C|C, CC|C, C|CC, CSC, CCβ|Cβ C, C|Cβ Cβ|C,
C|Cπ/2SC, CSCπ/2|C, C|Cπ/2SCπ/2|C}. (15.49)

As many as five primitives could be needed to execute the shortest path. A
subscript of π/2 is given in some cases because the curve must be followed for
precisely π/2 radians. For some others, β is given as a subscript to indicate that
it must match the parameter of another primitive. The form given in (15.49)

15.3. OPTIMAL PATHS FOR SOME WHEELED VEHICLES 885

Base α β γ d

Cα|Cβ|Cγ [0, π] [0, π] [0, π] −
Cα|CβCγ [0, β] [0, π/2] [0, β] −
CαCβ|Cγ [0, β] [0, π/2] [0, β] −
CαSdCγ [0, π/2] - [0, π/2] (0,∞)
CαCβ|CβCγ [0, β] [0, π/2] [0, β] −
Cα|CβCβ|Cγ [0, β] [0, π/2] [0, β] −
Cα|Cπ/2SdCπ/2|Cγ [0, π/2] - [0, π/2] (0,∞)
Cα|Cπ/2SdCγ [0, π/2] - [0, π/2] (0,∞)
CαSdCπ/2|Cγ [0, π/2] - [0, π/2] (0,∞)

Figure 15.7: The interval ranges are shown for each motion primitive parameter
for the Reeds-Shepp optimal curves.

Symbol Gear: u1 Steering: u2

S+ 1 0
S− -1 0
L+ 1 1
L− -1 1
R+ 1 -1
R− -1 -1

Figure 15.8: The six motion primitives from which all optimal curves for the
Reeds-Shepp car can be constructed.

is analogous to (15.46) for the Dubins car. The parameter ranges can also be
specified, to yield a form analogous to (15.47). The result is shown in Figure 15.7.
Example curves for two cases are shown in Figure 15.9.

Now the base words will be made more precise by specifying the particular
motion primitive. Imagine constructing a list of words analogous to (15.44) for
the Dubins car. There are six primitives as shown in Figure 15.8. The symbols
S, L, and R are used again. To indicate the forward or reverse gear, + and −
superscripts will be used as shown in Figure 15.8.6

Figure 15.10 shows 48 different words, which result from uncompressing the
base words expressed using C, S, and “ | ” in (15.49). Each shortest path is a
word with length at most five. There are substantially more words than for the
Dubins car. Each base word in (15.49) expands into four or eight words using the
motion primitives. To uncompress each base word, the rule that R and L cannot
be applied consecutively is maintained. This yields four possibilities for the first

6This differs conceptually from the notation used in [903]. There, r− corresponds to L− here.
The L here means that the steering wheel is positioned for a left turn, but the car is in reverse.
This aids in implementing the rule that R and L cannot be consecutive in a word.

886 S. M. LaValle: Planning Algorithms

α

γ

qG
qI

β

R+
α R+

γ

L−
β

Figure 15.9: An example of the R+
αL

−
βR

+
γ curve. This uses reverse to generate a

curve that is shorter than the one in Figure 15.4b for the Dubins car.

six compressed words. The remaining three involve an intermediate S primitive,
which allows eight possible sequences of Rs and Ls for each one. Two of the 48
words were eliminated in [923]. Each of the remaining 46 words can actually occur
for a shortest path and are called the Reeds-Shepp curves.

For use as an LPM, the problem appears once again of determining the partic-
ular word and parameters for a given qI and qG. This was not difficult for Dubins
curves, but now there are 46 possibilities. The naive approach of testing every
word and choosing the shortest one may be too costly. The precise cell boundaries
in C over which each word applies are given in [903]. The cell boundaries are un-
fortunately quite complicated, which makes the point location algorithm difficult
to implement. A simple way to prune away many words from consideration is
to use intervals of validity for θ. For some values of θ, certain compressed words
are impossible as shortest paths. A convenient table of words that become active
over ranges of θ is given in [903]. Once again, the length of the shortest path can
serve as a distance function in sampling-based planning algorithms. The resulting
Reeds-Shepp metric is continuous because the Reeds-Shepp car is STLC, which
will be established in Section 15.4.

15.3.3 Balkcom-Mason Curves

In recent years, two more families of optimal curves have been determined [64, 211].
Recall the differential-drive system from Section 13.1.2, which appears in many
mobile robot systems. In many ways, it appears that the differential drive is
a special case of the simple car. The expression of the system given in (13.17)
can be made to appear identical to the Reeds-Shepp car system in (15.48). For
example, letting r = 1 and L = 1 makes them equivalent by assigning uω = u1 and

15.3. OPTIMAL PATHS FOR SOME WHEELED VEHICLES 887

Base word Sequences of motion primitives
C|C|C (L+R−L+)(L−R+L−)(R+L−R+)(R−L+R−)
CC|C (L+R+L−)(L−R−L+)(R+L+R−)(R−L−R+)
C|CC (L+R−L−)(L−R+L+)(R+L−R−)(R−L+R+)
CSC (L+S+L+)(L−S−L−)(R+S+R+)(R−S−R−)

(L+S+R+)(L−S−R−)(R+S+L+)(R−S−L−)
CCβ|Cβ C (L+R+

β L
−
βR

−)(L−R−
β L

+
βR

+)(R+L+
βR

−
β L

−)(R−L−
βR

+
β L

+)

C|Cβ Cβ|C (L+R−
β L

−
βR

+)(L−R+
β L

+
βR

−)(R+L−
βR

−
β L

+)(R−L+
βR

+
β L

−)

C|Cπ/2SC (L+R−
π/2S

−R−)(L−R+
π/2S

+R+)(R+L−
π/2S

−L−)(R−L+
π/2S

+L+)

(L+R−
π/2S

−L−)(L−R+
π/2S

+L+) (R+L−
π/2S

−R−)(R−L+
π/2S

+R+)

CSCπ/2|C (L+S+L+
π/2R

−)(L−S−L−
π/2R

+)(R+S+R+
π/2L

−)(R−S−R−
π/2L

+)

(R+S+L+
π/2R

−)(R−S−L−
π/2R

+)(L+S+R+
π/2L

−)(L−S−R−
π/2L

+)

C|Cπ/2SCπ/2|C (L+R−
π/2S

−L−
π/2R

+)(L−R+
π/2S

+L+
π/2R

−)

(R+L−
π/2S

−R−
π/2L

+)(R−L+
π/2S

+R+
π/2L

−)

Figure 15.10: The 48 curves of Reeds and Shepp. Sussmann and Tang [923] showed
that (L−R+L−) and (R−L+R−), which appear in the first row, can be eliminated.
Hence, only 46 words are needed to describe the shortest paths.

uψ = u1u2. Consider the distance traveled by a point attached to the center of the
differential-drive axle using (15.42). Minimizing this distance for any qI and qG is
trivial, as shown in Figure 13.4 of Section 13.1.2. The center point can be made to
travel in a straight line in W = R2. This would be possible for the Reeds-Shepp
car if ρmin = 0, which implies that φmax = π/2. It therefore appeared for many
years that no interesting curves exist for the differential drive.

The problem, however, with measuring the distance traveled by the axle cen-
ter is that pure rotations are cost-free. This occurs when the wheels rotate at
the same speed but with opposite angular velocities. The center does not move;
however, the time duration, energy expenditure, and wheel rotations that occur
are neglected. By incorporating one or more of these into the cost functional, a
challenging optimization arises. Balkcom and Mason bounded the speed of the
differential drive and minimized the total time that it takes to travel from qI to
qG. Using (13.16), the action set is defined as U = [−1, 1] × [−1, 1], in which the
maximum rotation rate of each wheel is one (an alternative bound can be used
without loss of generality). The criterion to optimize is

L(q̃, ũ) =

∫ tF

0

√

ẋ(t)2 + ẏ(t)2 + |θ̇(t)|dt, (15.50)

which takes θ into account, whereas it was neglected in (15.42). This criterion is
once again equivalent to minimizing the time to reach qG. The resulting model will
be referred to as the Balkcom-Mason drive. An alternative criterion is the total
amount of wheel rotation; this leads to an alternative family of optimal curves
[211].

888 S. M. LaValle: Planning Algorithms

Symbol Left wheel: ul Right wheel: ur

⇑ 1 1
⇓ -1 -1
x -1 1
y 1 -1

Figure 15.11: The four motion primitives from which all optimal curves for the
differential-drive robot can be constructed.

It was shown in [64] that only the four motion primitives shown in Figure
15.11 are needed to express time-optimal paths for the differential-drive robot.
Each primitive corresponds to holding one action variable fixed at its limit for an
interval of time. Using the symbols in Figure 15.11 (which were used in [64]),
words can be formed that describe the optimal path. It has been shown that the
word length is no more than five. Thus, any shortest paths may be expressed as a
piecewise-constant action trajectory in which there are no more than five pieces.
Every piece corresponds to one of the primitives in Figure 15.11.

It is convenient in the case of the Balkcom-Mason drive to use the same sym-
bols for both base words and for precise specification of primitives. Symmetry
transformations will be applied to each base word to yield a family of eight words
that precisely specify the sequences of motion primitives. Nine base words describe
the shortest paths:

{y, ⇓, ⇓y, y⇓y, ⇑xπ⇓, x⇓y, ⇓yy, x⇓y⇑, ⇑x⇓y⇑}. (15.51)

This is analogous to the compressed forms given in (15.46) and (15.49). The
motions are depicted in Figure 15.12.

Figure 15.13 shows 40 distinct Balkcom-Mason curves that result from apply-
ing symmetry transformations to the base words of (15.51). There are 72 entries
in Figure 15.13, but many are identical. The transformation T1 indicates that
the directions of ⇑ and ⇓ are flipped from the base word. The transformation T2

reverses the order of the motion primitives. The transformation T3 flips the direc-
tions of x and y. The transformations commute, and there are seven possible
ways to combine them, which contributes to a row of Figure 15.13.

To construct an LPM or distance function, the same issues arise as for the
Reeds-Shepp and Dubins cars. Rather than testing all 40 words to find the shortest
path, simple tests can be defined over which a particular word becomes active [64].
A slice of the precise cell decomposition and the resulting optimal cost-to-go (which
can be called the Balkcom-Mason metric) are shown in Figure 15.14.

15.4 Nonholonomic System Theory

This section gives some precision to the term nonholonomic, which was used loosely
in Chapters 13 and 14. Furthermore, small-time controllability (STLC), which

15.4. NONHOLONOMIC SYSTEM THEORY 889

Figure 15.12: Each of the nine base words is depicted [64]. The last two are only
valid for small motions; they are magnified five times and the robot outline is not
drawn.

Base T1 T2 T3 T2 ◦ T1 T3 ◦ T1 T3 ◦ T2 T3 ◦ T2 ◦ T1
A. y y y x y x x x

B. ⇓ ⇑ ⇓ ⇓ ⇑ ⇑ ⇓ ⇑
C. ⇓y ⇑y y⇓ ⇓x y⇑ ⇑x x⇓ x⇑
D. y⇓y y⇑y y⇓y x⇓x y⇑y x⇑x x⇓x x⇑x
E. ⇑xπ⇓ ⇓xπ⇑ ⇓xπ⇑ ⇑yπ⇓ ⇑xπ⇓ ⇓yπ⇑ ⇓yπ⇑ ⇑yπ⇓
F. x⇓y x⇑y y⇓x y⇓x y⇑x y⇑x x⇓y x⇑y
G. ⇓y⇑ ⇑y⇓ ⇑y⇓ ⇓x⇑ ⇓y⇑ ⇑x⇓ ⇑x⇓ ⇓x⇑
H. x⇓y⇑ x⇑y⇓ ⇑y⇓x y⇓x⇑ ⇓y⇑x y⇑x⇓ ⇑x⇓y ⇓x⇑y
I. ⇑x⇓y⇑ ⇓x⇑y⇓ ⇑y⇓x⇑ ⇑y⇓x⇑ ⇓y⇑x⇓ ⇓y⇑x⇓ ⇑x⇓y⇑ ⇓x⇑y⇓

Figure 15.13: The 40 optimal curve types for the differential-drive robot, sorted
by symmetry class [64].

890 S. M. LaValle: Planning Algorithms

Figure 15.14: A slice of the optimal curves is shown for qI = (x, y, π
4
) and qG =

(0, 0, 0) [64]. Level sets of the optimal cost-to-go G∗ are displayed. The coordinates
correspond to a differential drive with r = L = 1 in (13.16).

was defined in Section 15.1.3, is addressed. The presentation given here barely
scratches the surface of this subject, which involves deep mathematical principles
from differential geometry, algebra, control theory, and mechanics. The intention
is to entice the reader to pursue further study of these topics; see the suggested
literature at the end of the chapter.

15.4.1 Control-Affine Systems

Nonholonomic system theory is restricted to a special class of nonlinear systems.
The techniques of Section 15.4 utilize ideas from linear algebra. The main concepts
will be formulated in terms of linear combinations of vector fields on a smooth
manifold X. Therefore, the formulation is restricted to control-affine systems,
which were briefly introduced in Section 13.2.3. For these systems, ẋ = f(x, u) is
of the form

ẋ = h0(x) +
m∑

i=1

hi(x)ui, (15.52)

in which each hi is a vector field on X.

The vector fields are expressed using a coordinate neighborhood of X. Usually,
m < n, in which n is the dimension of X. Unless otherwise stated, assume that
U = Rm. In some cases, U may be restricted.

15.4. NONHOLONOMIC SYSTEM THEORY 891

Each action variable ui ∈ R can be imagined as a coefficient that determines
how much of hi(x) is blended into the result ẋ. The drift term h0(x) always remains
and is often such a nuisance that the driftless case will be the main focus. This
means that h0(x) = 0 for all x ∈ X, which yields

ẋ =
m∑

i=1

hi(x)ui. (15.53)

The driftless case will be used throughout most of this section. The set h1, . . .,
hm, is referred to as the system vector fields. It is essential that U contains at
least an open set that contains the origin of Rm. If the origin is not contained in
U , then the system is no longer driftless.7

Control-affine systems arise in many mechanical systems. Velocity constraints
on the C-space frequently are of the Pfaffian form (13.5). In Section 13.1.1, it was
explained that under such constraints, a configuration transition equation (13.6)
can be derived that is linear if q is fixed. This is precisely the driftless form (15.53)
using X = C. Most of the models in Section 13.1.2 can be expressed in this form.
The Pfaffian constraints on configuration are often called kinematic constraints
because they arise due to the kinematics of bodies in contact, such as a wheel
rolling. The more general case of (15.52) for a phase space X arises from dynamic
constraints that are obtained from Euler-Lagrange equation (13.118) or Hamilton’s
equations (13.198) in the formulation of the mechanics. These constraints capture
conservation laws, and the drift term usually appears due to momentum.

Example 15.5 (A Simplified Model for Differential Drives and Cars) Both
the simple-car and the differential-drive models of Section 13.1.2 can be expressed
in the form (15.53) after making simplifications. The simplified model, (15.48),
can be adapted to conveniently express versions of both of them by using different
restrictions to define U . The third equation of (15.48) can be reduced to θ̇ = u2

without affecting the set of velocities that can be achieved. To conform to (15.53),
the equations can then be written in a linear-algebra form as

ẋ
ẏ

θ̇

 =

cos θ
sin θ
0

u1 +

0
0
1

u2. (15.54)

This makes it clear that there are two system vector fields, which can be combined
by selecting the scalar values u1 and u2. One vector field allows pure translation,
and the other allows pure rotation. Without restrictions on U , this system be-
haves like a differential drive because the simple car cannot execute pure rotation.
Simulating the simple car with (15.54) requires restrictions on U (such as requiring
that u1 be 1 or −1, as in Section 15.3.2). This is equivalent to the unicycle from
Figure 13.5 and (13.18).

7Actually, if the convex hull of U contains an open set that contains the origin, then a driftless
system can be simulated by rapid switching.

892 S. M. LaValle: Planning Algorithms

Note that (15.54) can equivalently be expressed as

ẋ
ẏ

θ̇

 =

cos θ 0
sin θ 0
0 1

(
u1

u2

)

(15.55)

by organizing the vector fields into a matrix. �

In (15.54), the vector fields were written as column vectors that combine lin-
early using action variables. This suggested that control-affine systems can be
alternatively expressed using matrix multiplication in (15.55). In general, the
vector fields can be organized into an n×m matrix as

H(x) =
[
h1(x) h2(x) · · · hm(x)

]
. (15.56)

In the driftless case, this yields

ẋ = H(x) u (15.57)

as an equivalent way to express (15.53)
It is sometimes convenient to work with Pfaffian constraints,

g1(x)ẋ1 + g2(x)ẋ2 + · · ·+ gn(x)ẋn = 0, (15.58)

instead of a state transition equation. As indicated in Section 13.1.1, a set of k
independent Pfaffian constraints can be converted into a state transition equation
with m = (n − k) action variables. The resulting state transition equation is
a driftless control-affine system. Thus, Pfaffian constraints provide a dual way
of specifying driftless control-affine systems. The k Pfaffian constraints can be
expressed in matrix form as

G(x) ẋ = 0, (15.59)

which is the dual of (15.57), and G(x) is a k × n matrix formed from the gi
coefficients of each Pfaffian constraint. Systems with drift can be expressed in a
Pfaffian-like form by constraints

g0(x) + g1(x)ẋ1 + g2(x)ẋ2 + · · ·+ gn(x)ẋn = 0. (15.60)

15.4.2 Determining Whether a System Is Nonholonomic

The use of linear algebra in Section 15.4.1 suggests further development of alge-
braic concepts. This section briefly introduces concepts that resemble ordinary
linear algebra but apply to linear combinations of vector fields. This provides
the concepts and tools needed to characterize important system properties in the
remainder of this section. This will enable the assessment of whether a system is
nonholonomic and also whether it is STLC. Many of the constructions are named
after Sophus Lie (pronounced “lee”), a mathematician who in the nineteenth cen-
tury contributed many ideas to algebra and geometry that happen to be relevant in
the study of nonholonomic systems (although that application came much later).

15.4. NONHOLONOMIC SYSTEM THEORY 893

15.4.2.1 Completely integrable or nonholonomic?

Every control-affine system must be one or the other (not both) of the following:

1. Completely integrable: This means that the Pfaffian form (15.59) can be
obtained by differentiating k equations of the form fi(x) = 0 with respect
to time. This case was interpreted as being trapped on a surface in Section
13.1.3. An example of being trapped on a circle in R2 was given in (13.22).

2. Nonholonomic: This means that the system is not completely integrable.
In this case, it might even be possible to reach all of X, even if the number
of action variables m is much smaller than n, the dimension of X.

In this context, the term holonomic is synonymous with completely integrable,
and nonintegrable is synonymous with nonholonomic. The term nonholonomic is
sometimes applied to non-Pfaffian constraints [588]; however, this will be avoided
here, in accordance with mechanics literature [112].

The notion of integrability used here is quite different from that required for
(14.1). In that case, the state transition equation needed to be integrable to obtain
integral curves from any initial state. This was required for all systems considered
in this book. By contrast, complete integrability implies that the system can be
expressed without even using derivatives. This means that all integral curves can
eventually be characterized by constraints that do not involve derivatives.

To help understand complete integrability, the notion of an integral curve will
be generalized from one to m dimensions. A manifold M ⊆ X is called an integral
manifold of a set of Pfaffian constraints if at every x ∈ M , all vectors in the tangent
space Tx(M) satisfy the constraints. For a set of completely integrable Pfaffian
constraints, a partition of X into integral manifolds can be obtained by defining
maximal integral manifolds from every x ∈ X. The resulting partition is called a
foliation, and the maximal integral manifolds are called leaves [872].

Example 15.6 (A Foliation with Spherical Leaves) As an example, sup-
pose X = Rn and consider the Pfaffian constraint

x1ẋ1 + x2ẋ2 + · · · xnẋn = 0. (15.61)

This is completely integrable because it can be obtained by differentiating the
equation of a sphere,

x2
1 + x2

2 + · · · x2
n − r2 = 0, (15.62)

with respect to time (r is a constant). The particular sphere that is obtained
via integration depends on an initial state. The foliation is the collection of all
concentric spheres that are centered at the origin. For example, if X = R3, then a
maximal integral manifold arises for each point of the form (0, 0, r). In each case,
it is a sphere of radius r. The foliation is generated by selecting every r ∈ [0,∞).
�

894 S. M. LaValle: Planning Algorithms

The task in this section is to determine whether a system is completely inte-
grable. Imagine someone is playing a game with you. You are given an control-
affine system and asked to determine whether it is completely integrable. The
person playing the game with you can start with equations of the form hi(x) = 0
and differentiate them to obtain Pfaffian constraints. These can then be converted
into the parametric form to obtain the state transition equation (15.53). It is easy
to construct challenging problems; however, it is very hard to solve them. The
concepts in this section can be used to determine only whether it is possible to
win such a game. The main tool will be the Frobenius theorem, which concludes
whether a system is completely integrable. Unfortunately, the conclusion is ob-
tained without producing the integrated constraints hi(x) = 0. Therefore, it is
important to keep in mind that “integrability” does not mean that you can inte-
grate it to obtain a nice form. This is a challenging problem of reverse engineering.
On the other hand, it is easy to go in the other direction by differentiating the
constraints to make a challenging game for someone else to play.

15.4.2.2 Distributions

A distribution8 expresses a set of vector fields on a smooth manifold. Suppose
that a driftless control-affine system (15.53) is given. Recall the vector space defi-
nition from Section 8.3.1 or from linear algebra. Also recall that a state transition
equation can be interpreted as a vector field if the actions are fixed and as a vector
space if the state is instead fixed. For U = Rm and a fixed x ∈ X, the state
transition equation defines a vector space in which each hi evaluated at x is a
basis vector and each ui is a coefficient. For example, in (15.54), the vector fields
h1 and h2 evaluated at q = (0, 0, 0) become [1 0 0]T and [0 0 1]T , respectively.
These serve as the basis vectors. By selecting values of u ∈ R2, a 2D vector space
results. Any vector of the form [a 0 b]T can be represented by setting u1 = a and
u2 = b. More generally, let △(x) denote the vector space obtained in this way for
any x ∈ X.

The dimension of a vector space is the number of independent basis vectors.
Therefore, the dimension of △(x) is the rank of H(x) from (15.56) when evaluated
at the particular x ∈ X. Now consider defining △(x) for every x ∈ X. This yields
a parameterized family of vector spaces, one for each x ∈ X. The result could
just as well be interpreted as a parameterized family of vector fields. For example,
consider actions for i from 1 to m of the form ui = 1 and uj = 0 for all i 6= j. If
the action is held constant over all x ∈ X, then it selects a single vector field hi
from the collection of m vector fields:

ẋ = hi(x). (15.63)

Using constant actions, an m-dimensional vector space can be defined in which
each vector field hi is a basis vector (assuming the hi are linearly independent),

8This distribution has nothing to do with probability theory. It is just an unfortunate coin-
cidence of terminology.

15.4. NONHOLONOMIC SYSTEM THEORY 895

and the ui ∈ R are the coefficients:

u1h1(x) + u2h2(x) + · · ·+ umhm(x). (15.64)

This idea can be generalized to allow the ui to vary over X. Thus, rather than
having u constant, it can be interpreted as a feedback plan π : X → U , in which
the action at x is given by u = π(x). The set of all vector fields that can be
obtained as

π1(x)h1(x) + π2(x)h2(x) + · · ·+ πm(x)hm(x) (15.65)

is called the distribution of the set {h1, . . . , hm} of vector fields and is denoted as
△. If △ is obtained from an control-affine system, then △ is called the system
distribution. The resulting set of vector fields is not quite a vector space because
the nonzero coefficients πi do not necessarily have a multiplicative inverse. This
is required for the coefficients of a vector field and was satisfied by using R in the
case of constant actions. A distribution is instead considered algebraically as a
module [469]. In most circumstances, it is helpful to imagine it as a vector space
(just do not try to invert the coefficients!). Since a distribution is almost a vector
space, the span notation from linear algebra is often used to define it:

△ = span{h1, h2, . . . , hm}. (15.66)

Furthermore, it is actually a vector space with respect to constant actions u ∈ Rm.
Note that for each fixed x ∈ X, the vector space △(x) is obtained, as defined
earlier. A vector field f is said to belong to a distribution △ if it can be expressed
using (15.65). If for all x ∈ X, the dimension of △(x) is m, then △ is called a
nonsingular distribution (or regular distribution). Otherwise, △ is called a singular
distribution, and the points x ∈ X for which the dimension of △(x) is less than m
are called singular points. If the dimension of △(x) is a constant c over all x ∈ X,
then c is called the dimension of the distribution and is denoted by dim(△). If
the vector fields are smooth, and if π is restricted to be smooth, then a smooth
distribution is obtained, which is a subset of the original distribution.

As depicted in Figure 15.15, a nice interpretation of the distribution can be
given in terms of the tangent bundle of a smooth manifold. The tangent bundle
was defined for X = Rn in (8.9) and generalizes to any smooth manifold X to
obtain

T (X) =
⋃

x∈X
Tx(X). (15.67)

The tangent bundle is a 2n-dimensional manifold in which n is the dimension of X.
A phase space for which x = (q, q̇) is actually T (C). In the current setting, each
element of T (X) yields a state and a velocity, (x, ẋ). Which pairs are possible for
a driftless control-affine system? Each △(x) indicates the set of possible ẋ values
for a fixed x. The point x is sometimes called the base and △(x) is called the
fiber over x in T (X). The distribution △ simply specifies a subset of Tx(X) for
every x ∈ X. For a vector field f to belong to △, it must satisfy f(x) ∈ △(x)
for all x ∈ X. This is just a restriction to a subset of T (X). If m = n and the

896 S. M. LaValle: Planning Algorithms

X x

Tx(X)

T (X)

△
△(x)

Figure 15.15: The distribution △ can be imagined as a slice of the tangent bundle
T (X). It restricts the tangent space at every x ∈ X.

system vector fields are independent, then any vector field is allowed. In this case,
△ includes any vector field that can be constructed from the vectors in T (X).

Example 15.7 (The Distribution for the Differential Drive) The system
in (15.54) yields a two-dimensional distribution:

△ = span{[cos θ sin θ 0]T , [0 0 1]T}. (15.68)

The distribution is nonsingular because for any (x, y, θ) in the coordinate neigh-
borhood, the resulting vector space △(x, y, θ) is two-dimensional. �

Example 15.8 (A Singular Distribution) Consider the following system,
which is given in [478]:

ẋ1

ẋ2

ẋ3

 = h1(x)u1 + h2(x)u2 + h3(x)u3

=

x1

1 + x3

1

u1 +

x1x2

(1 + x3)x2

x2

u2 +

x1

x1

0

u3.

(15.69)

The distribution is
△ = span{h1, h2, h3}. (15.70)

The first issue is that for any x ∈ R3, h2(x) = h1(x)x2, which implies that the
vector fields are linearly dependent over all of R3. Hence, this distribution is
singular because m = 3 and the dimension of ∆(x) is 2 if x1 6= 0. If x1 = 0, then
the dimension of ∆(x) drops to 1. The dimension of △ is not defined because the
dimension of ∆(x) depends on x. �

15.4. NONHOLONOMIC SYSTEM THEORY 897

q(0) q(∆t)

q(2∆t)

x

y

q(2∆t)

q(4∆t)

q(3∆t)

y

x

(a) (b)

Figure 15.16: (a) The effect of the first two primitives. (b) The effect of the last
two primitives.

A distribution can alternatively be defined directly from Pfaffian constraints.
Each gi(x) = 0 is called an annihilator because enforcing the constraint eliminates
many vector fields from consideration. At each x ∈ X, △(x) is defined as the
set of all velocity vectors that satisfy all k Pfaffian constraints. The constraints
themselves can be used to form a codistribution, which is a kind of dual to the
distribution. The codistribution can be interpreted as a vector space in which each
constraint is a basis vector. Constraints can be added together or multiplied by
any c ∈ R, and there is no effect on the resulting distribution of allowable vector
fields.

15.4.2.3 Lie brackets

The key to establishing whether a system is nonholonomic is to construct mo-
tions that combine the effects of two action variables, which may produce motions
in a direction that seems impossible from the system distribution. To motivate
the coming ideas, consider the differential-drive model from (15.54). Apply the
following piecewise-constant action trajectory over the interval [0, 4∆t]:

u(t) =

(1, 0) for t ∈ [0,∆t)
(0, 1) for t ∈ [∆t, 2∆t)
(−1, 0) for t ∈ [2∆t, 3∆t)
(0,−1) for t ∈ [3∆t, 4∆t] .

(15.71)

The action trajectory is a sequence of four motion primitives: 1) translate forward,
2) rotate forward, 3) translate backward, and 4) rotate backward.

898 S. M. LaValle: Planning Algorithms

The result of all four motion primitives in succession from qI = (0, 0, 0) is
shown in Figure 15.16. It is fun to try this at home with an axle and two wheels
(Tinkertoys work well, for example). The result is that the differential drive moves
sideways!9 From the transition equation (15.54) such motions appear impossible.
This is a beautiful property of nonlinear systems. The state may wiggle its way in
directions that do not seem possible. A more familiar example is parallel parking a
car. It is known that a car cannot directly move sideways; however, some wiggling
motions can be performed to move it sideways into a tight parking space. The
actions we perform while parking resemble the primitives in (15.71).

Algebraically, the motions of (15.71) appear to be checking for commutativity.
Recall from Section 4.2.1 that a group G is called commutative (or Abelian) if
ab = ba for any a, b ∈ G. A commutator is a group element of the form aba−1b−1.
If the group is commutative, then aba−1b−1 = e (the identity element) for any
a, b ∈ G. If a nonidentity element of G is produced by the commutator, then the
group is not commutative. Similarly, if the trajectory arising from (15.71) does not
form a loop (by returning to the starting point), then the motion primitives do not
commute. Therefore, a sequence of motion primitives in (15.71) will be referred to
as the commutator motion. It will turn out that if the commutator motion cannot
produce any velocities not allowed by the system distribution, then the system is
completely integrable. This means that if we are trapped on a surface, then it is
impossible to leave the surface by using commutator motions.

Now generalize the differential drive to any driftless control-affine system that
has two action variables:

ẋ = f(x)u1 + g(x)u2. (15.72)

Using the notation of (15.53), the vector fields would be h1 and h2; however, f
and g are chosen here to allow subscripts to denote the components of the vector
field in the coming explanation.

Suppose that the commutator motion (15.71) is applied to (15.72) as shown in
Figure 15.17. Determining the resulting motion requires some general computa-
tions, as opposed to the simple geometric arguments that could be made for the
differential drive. If would be convenient to have an expression for the velocity
obtained in the limit as ∆t approaches zero. This can be obtained by using Tay-
lor series arguments. These are simplified by the fact that the action history is
piecewise constant.

The coming derivation will require an expression for ẍ under the application of
a constant action. For each action, a vector field of the form ẋ = h(x) is obtained.
Upon differentiation, this yields

ẍ =
dh

dt
=

∂h

∂x

dx

dt
=

∂h

dx
ẋ =

∂h

dx
h(x). (15.73)

This follows from the chain rule because h is a function of x, which itself is a
function of t. The derivative ∂h/∂x is actually an n × n Jacobian matrix, which

9It also moves slightly forward; however, this can be eliminated by either lengthening the
time of the third primitive or by considering the limit as ∆ approaches zero.

15.4. NONHOLONOMIC SYSTEM THEORY 899

−g

−f

g

f
x(∆t)

x(2∆t)

x(0)

x(3∆t)

Figure 15.17: The velocity obtained by the Lie bracket can be approximated by a
sequence of four motion primitives.

is multiplied by the vector ẋ. To further clarify (15.73), each component can be
expressed as

ẍi =
d

dt
hi(x(t)) =

n∑

j=1

∂hi
∂xj

hj. (15.74)

Now the state trajectory under the application of (15.71) will be determined
using the Taylor series, which was given in (14.17). The state trajectory that
results from the first motion primitive u = (1, 0) can be expressed as

x(∆t) = x(0) + ∆t ẋ(0) + 1
2
(∆t)2 ẍ(0) + · · ·

= x(0) + ∆t f(x(0)) +
1

2
(∆t)2

∂f

∂x

∣
∣
∣
x(0)

f(x(0)) + · · · ,
(15.75)

which makes use of (15.73) in the second line. The Taylor series expansion for the
second primitive is

x(2∆t) = x(∆t) + ∆t g(x(∆t)) +
1

2
(∆t)2

∂g

∂x

∣
∣
∣
x(∆t)

g(x(∆t)) + · · · . (15.76)

An expression for g(x(∆t)) can be obtained by using the Taylor series expansion
in (15.75) to express x(∆t). The first terms after substitution and simplification
are

x(2∆t) = x(0) + ∆t (f + g) + (∆t)2
(
1

2

∂f

∂x
f +

∂g

∂x
f +

1

2

∂g

∂x
g

)

+ · · · . (15.77)

To simplify the expression, the evaluation at x(0) has been dropped from every
occurrence of f and g and their derivatives.

The idea of substituting previous Taylor series expansions as they are needed
can be repeated for the remaining two motion primitives. The Taylor series ex-
pansion for the result after the third primitive is

x(3∆t) = x(0) + ∆t g + (∆t)2
(
∂g

∂x
f − ∂f

∂x
g +

1

2

∂g

∂x
g

)

+ · · · . (15.78)

900 S. M. LaValle: Planning Algorithms

Finally, the Taylor series expansion after all four primitives have been applied is

x(4∆t) = x(0) + (∆t)2
(
∂g

∂x
f − ∂f

∂x
g

)

+ · · · . (15.79)

Taking the limit yields

lim
∆t→0

x(4∆t)− x(0)

(∆t)2
=

∂g

∂x
f − ∂f

∂x
g, (15.80)

which is called the Lie bracket of f and g and is denoted by [f, g]. Similar to
(15.74), the ith component can be expressed as

[f, g]i =
n∑

j=1

(

fj
∂gi
∂xj

− gj
∂fi
∂xj

)

. (15.81)

The Lie bracket is an important operation in many subjects, and is related to the
Poisson and Jacobi brackets that arise in physics and mathematics.

Example 15.9 (Lie Bracket for the Differential Drive) The Lie bracket should
indicate that sideways motions are possible for the differential drive. Consider tak-
ing the Lie bracket of the two vector fields used in (15.54). Let f = [cos θ sin θ 0]T

and g = [0 0 1]T . Rename h1 and h2 to f and g to allow subscripts to denote the
components of a vector field.

By applying (15.81), the Lie bracket [f, g] is

[f, g]1 = f1
∂g1
∂x

− g1
∂f1
∂x

+ f2
∂g1
∂y

− g2
∂f1
∂y

+ f3
∂g1
∂θ

− g3
∂f1
∂θ

= sin θ

[f, g]2 = f1
∂g2
∂x

− g1
∂f2
∂x

+ f2
∂g2
∂y

− g2
∂f2
∂y

+ f3
∂g2
∂θ

− g3
∂f2
∂θ

= − cos θ

[f, g]3 = f1
∂g3
∂x

− g1
∂f3
∂x

+ f2
∂g3
∂y

− g2
∂f3
∂y

+ f3
∂g3
∂θ

− g3
∂f3
∂θ

= 0.

(15.82)

The resulting vector field is [f, g] = [sin θ − cos θ 0]T , which indicates the side-
ways motion, as desired. When evaluated at q = (0, 0, 0), the vector [0 − 1 0]T

is obtained. This means that performing short commutator motions wiggles the
differential drive sideways in the −y direction, which we already knew from Figure
15.16. �

Example 15.10 (Lie Bracket of Linear Vector Fields) Suppose that each
vector field is a linear function of x. The n × n Jacobians ∂f/∂x and ∂g/∂x are
constant.

15.4. NONHOLONOMIC SYSTEM THEORY 901

As a simple example, recall the nonholonomic integrator (13.43). In the linear-
algebra form, the system is

ẋ1

ẋ2

ẋ3

 =

1
0

−x2

u1 +

0
1
x1

u2. (15.83)

Let f = h1 and g = h2. The Jacobian matrices are

∂f

∂x
=

0 0 0
0 0 0
0 −1 0

 and
∂g

∂x
=

0 0 0
0 0 0
1 0 0

 . (15.84)

Using (15.80),

∂g

∂x
f − ∂f

∂x
g =

0 0 0
0 0 0
1 0 0

1
0

−x2

−

0 0 0
0 0 0
0 −1 0

0
1

−x1

 =

0
0
2

 . (15.85)

This result can be verified using (15.81).
�

15.4.2.4 The Frobenius Theorem

The Lie bracket is the only tool needed to determine whether a system is com-
pletely integrable (holonomic) or nonholonomic (not integrable). Suppose that a
system of the form (15.53) is given. Using the m system vector fields h1, . . ., hm
there are (m2) Lie brackets of the form [hi, hj] for i < j that can be formed. A
distribution △ is called involutive [133] if for each of these brackets there exist m
coefficients ck ∈ R such that

[hi, hj] =
m∑

k=1

ckhk. (15.86)

In other words, every Lie bracket can be expressed as a linear combination of the
system vector fields, and therefore it already belongs to △. The Lie brackets are
unable to escape △ and generate new directions of motion. We did not need to
consider all n2 possible Lie brackets of the system vector fields because it turns
out that [hi, hj] = −[hj, hi] and consequently [hi, hi] = 0. Therefore, the definition
of involutive is not altered by looking only at the (m2) pairs.

If the system is smooth and the distribution is nonsingular, then the Frobenius
theorem immediately characterizes integrability:

A system is completely integrable if and only if it is involutive.

902 S. M. LaValle: Planning Algorithms

Proofs of the Frobenius theorem appear in numerous differential geometry and
control theory books [133, 156, 478, 846]. There also exist versions that do not
require the distribution to be nonsingular.

Determining integrability involves performing Lie brackets and determining
whether (15.86) is satisfied. The search for the coefficients can luckily be avoided
by using linear algebra tests for linear independence. The n × m matrix H(x),
which was defined in (15.56), can be augmented into an n× (m+1) matrix H ′(x)
by adding [hi, hj] as a new column. If the rank of H ′(x) is m + 1 for any pair
hi and hj, then it is immediately known that the system is nonholonomic. If the
rank of H ′(x) is m for all Lie brackets, then the system is completely integrable.
Driftless linear systems, which are expressed as ẋ = Bu for a fixed matrix B, are
completely integrable because all Lie brackets are zero.

Example 15.11 (The Differential Drive Is Nonholonomic) For the differ-
ential drive model in (15.54), the Lie bracket [f, g] was determined in Example 15.9
to be [sin θ − cos θ 0]T . The matrix H ′(q), in which q = (x, y, θ), is

H ′(q) =

cos θ 0 sin θ
sin θ 0 − cos θ
0 1 0

 . (15.87)

The rank of H ′(q) is 3 for all q ∈ C (the determinant of H ′(q) is 1). Therefore, by
the Frobenius theorem, the system is nonholonomic. �

Example 15.12 (The Nonholonomic Integrator Is Nonholonomic) We would
hope that the nonholonomic integrator is nonholonomic. In Example 15.10, the
Lie bracket was determined to be [0 0 2]T . The matrix H ′(q) is

H ′(q) =

1 0 0
0 1 0

−x2 x1 2

 , (15.88)

which clearly has full rank for all q ∈ C. �

Example 15.13 (Trapped on a Sphere) Suppose that the following system
is given:

ẋ1

ẋ2

ẋ3

 =

x2

−x1

0

u1 +

x3

0
−x1

u2, (15.89)

for which X = R3 and U = R2. Since the vector fields are linear, the Jacobians
are constant (as in Example 15.10):

∂f

∂x
=

0 1 0
−1 0 0
0 0 0

 and
∂g

∂x
=

0 0 1
0 0 0
−1 0 0

 . (15.90)

15.4. NONHOLONOMIC SYSTEM THEORY 903

Using (15.80),

∂g

∂x
f − ∂f

∂x
g =

0 0 1
0 0 0
−1 0 0

x2
−x1
0

−

0 1 0
−1 0 0
0 0 0

x3
0

−x1

 =

0
x3
−x2

 . (15.91)

This yields the matrix

H ′(x) =

x2 −x1 0
x3 0 −x1

0 x3 −x2

 . (15.92)

The determinant is zero for all x ∈ R3, which means that [f, g] is never linearly
independent of f and g. Therefore, the system is completely integrable.10

The system can actually be constructed by differentiating the equation of a
sphere. Let

f(x) = x2
1 + x2

2 + x2
3 − r2 = 0, (15.93)

and differentiate with respect to time to obtain

x1ẋ1 + x2ẋ2 + x3ẋ3 = 0, (15.94)

which is a Pfaffian constraint. A parametric representation of the set of vectors
that satisfy (15.94) is given by (15.89). For each (u1, u2) ∈ R2, (15.89) yields a
vector that satisfies (15.94). Thus, this was an example of being trapped on a
sphere, which we would expect to be completely integrable. It was difficult, how-
ever, to suspect this using only (15.89). �

15.4.3 Determining Controllability

Determining complete integrability is the first step toward determining whether
a driftless control-affine system is STLC. The Lie bracket attempts to produce
motions in directions that do not seem to be allowed by the system distribution.
At each q, a velocity not in △(q) may be produced by the Lie bracket. By work-
ing further with Lie brackets, it is possible to completely characterize all of the
directions that are possible from each q. So far, the Lie brackets have only been
applied to the system vector fields h1, . . ., hm. It is possible to proceed further by
applying Lie bracket operations on Lie brackets. For example, [h1, [h1, h2]] can be
computed. This might generate a vector field that is linearly independent of all
of the vector fields considered in Section 15.4.2 for the Frobenius theorem. The
main idea in this section is to apply the Lie bracket recursively until no more
independent vector fields can be found. The result is called the Lie algebra. If the
number of independent vector fields obtained in this way is the dimension of X,
then it turns out that the system is STLC.

10This system is singular at the origin. A variant of the Frobenius theorem given here is
technically needed.

904 S. M. LaValle: Planning Algorithms

15.4.3.1 The Lie algebra

The notion of a Lie algebra is first established in general. Let V be any vector
space with coefficients in R. In V , the vectors can be added or multiplied by
elements of R; however, there is no way to “multiply” two vectors to obtain a
third. The Lie algebra introduces a product operation to V . The product is called
a bracket or Lie bracket (considered here as a generalization of the previous Lie
bracket) and is denoted by [·, ·] : V × V → V .

To be a Lie algebra obtained from V , the bracket must satisfy the following
three axioms:

1. Bilinearity: For any a, b ∈ R and u, v, w ∈ V ,

[au+ bv, w] = a[u, w] + b[v, w]

[u, av + bw] = a[u, w] + b[u, w].
(15.95)

2. Skew symmetry: For any u, v ∈ V ,

[u, v] = −[v, u]. (15.96)

This means that the bracket is anti-commutative.

3. Jacobi identity: For any u, v, w ∈ V ,

[[u, v], w] + [[v, w], u] + [[w, u], v] = 0. (15.97)

Note that the bracket is not even associative.

Let L(V) denote the Lie algebra of V . This is a vector space that includes all
elements of V and any new elements that can be obtained via Lie bracket oper-
ations. The Lie algebra L(V) includes every vector that can be obtained from
any finite number of nested Lie bracket operations. Thus, describing a Lie algebra
requires characterizing all vectors that are obtained under the algebraic closure of
the bracket operation. Since L(V) is a vector space, this is accomplished by find-
ing a basis of independent vectors of which all elements of L(V) can be expressed
as a linear combination.

Example 15.14 (The Vector Cross Product) Let V be the vector space
over R3 that is used in vector calculus. The basis elements are often denoted as ı̂,
̂, and k̂. A bracket for this vector space is simply the cross product

[u, v] = u× v. (15.98)

It can be verified that the required axioms of a Lie bracket are satisfied.
One interesting property of the cross product that is exploited often in analytic

geometry is that it produces a vector outside of the span of u and v. For example,
let W be the two-dimensional subspace of vectors

W = span{̂ı, ̂}. (15.99)

15.4. NONHOLONOMIC SYSTEM THEORY 905

The cross product always yields a vector that is a multiple of k̂, which lies outside
of V if the product is nonzero. This behavior is very similar to constructing vector
fields that lie outside of △ using the Lie bracket in Section 15.4.2. �

Example 15.15 (Lie Algebra on Lie Groups) Lie groups are the most im-
portant application of the Lie algebra concepts. Recall from Section 4.2.1 the
notion of a matrix group. Important examples throughout this book have been
SO(n) and SE(n). If interpreted as a smooth manifold, these matrix groups are
examples of Lie groups [63]. In general, a Lie group G is both a differentiable
manifold and a group with respect to some operation ◦ if and only if:

1. The product a ◦ b, interpreted as a function from G×G → G, is smooth.

2. The inverse a−1, interpreted as a function from G to G, is smooth.

The two conditions are needed to prevent the group from destroying the nice
properties that come with the smooth manifold. An important result in the study
of Lie groups is that all compact finite-dimensional Lie groups can be represented
as matrix groups.

For any Lie group, a Lie algebra can be defined on a special set of vector fields.
These are defined using the left translation mapping Lg : x 7→ gx. The vector
field formed from the differential of Lg is called a left-invariant vector field. A
Lie algebra can be defined on the set of these fields. The Lie bracket definition
depends on the particular group. For the case of GL(n), the Lie bracket is

[A,B] = AB − BA. (15.100)

In this case, the Lie bracket clearly appears to be a test for commutativity. If
the matrices commute with respect to multiplication, then the Lie bracket is zero.
The Lie brackets for SO(n) and SE(n) are given in many texts on mechanics and
control [156, 846]. The Lie algebra of left-invariant vector fields is an important
structure in the study of nonlinear systems and mechanics. �

15.4.3.2 Lie algebra of the system distribution

Now suppose that a set h1, . . ., hm of vector fields is given as a driftless control-
affine system, as in (15.53). Its associated distribution △ is interpreted as a vector
space with coefficients in R, and the Lie bracket operation was given by (15.81).
It can be verified that the Lie bracket operation in (15.81) satisfies the required
axioms for a Lie algebra.

As observed in Examples 15.9 and 15.10, the Lie bracket may produce vector
fields outside of △. By defining the Lie algebra of △ to be all vector fields that can
be obtained by applying Lie bracket operations, a potentially larger distribution
L(△) is obtained. The Lie algebra can be expressed using the span notation by
including h1, . . ., hm and all independent vector fields generated by Lie brackets.
Note that no more than n independent vector fields can possibly be produced.

906 S. M. LaValle: Planning Algorithms

Example 15.16 (The Lie Algebra of the Differential Drive) The Lie al-
gebra of the differential drive (15.54) is

L(△) = span{[cos θ sin θ 0]T , [0 0 1]T , [sin θ − cos θ 0]T}. (15.101)

This uses the Lie bracket that was computed in (15.82) to obtain a three-dimensional
Lie algebra. No further Lie brackets are needed because the maximum number of
independent vector fields has been already obtained. �

Example 15.17 (A Lie Algebra That Involves Nested Brackets) The pre-
vious example was not very interesting because the Lie algebra was generated after
computing only one bracket. Suppose that X = R5 and U = R2. In this case,
there is room to obtain up to three additional, linearly independent vector fields.
The dimension of the Lie algebra may be any integer from 2 to 5.

Let the system be

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

=

1
0
x2

x3

x4

u1 +

0
1
0
0
0

u2. (15.102)

This is a chained-form system, which is a concept that becomes important in
Section 15.5.2.

The first Lie bracket produces

[h1, h2] = [0 0 − 1 0 0]T . (15.103)

Other vector fields that can be obtained by Lie brackets are

[h1, [h1, h2]] = [0 0 0 1 0]T (15.104)

and
[h1, [h1, [h1, h2]]] = [0 0 0 0 1]T . (15.105)

The resulting five vector fields are independent over all x ∈ R5. This includes
h1, h2, and the three obtained from Lie bracket operations. Independence can be
established by placing them into a 5× 5 matrix,

1 0 0 0 0
0 1 0 0 0
x2 0 −1 0 0
x3 0 0 1 0
x4 0 0 0 1

, (15.106)

which has full rank for all x ∈ R5. No additional vector fields can possibly be
independent. Therefore, the five-dimensional Lie algebra is

L(△) = span{h1, h2, [h1, h2], [h1, [h1, h2]], [h1, [h1, [h1, h2]]]}. (15.107)

�

15.4. NONHOLONOMIC SYSTEM THEORY 907

15.4.3.3 Philip Hall basis of a Lie algebra

Determining the basis of a Lie algebra may be a long and tedious process. The
combinations of Lie brackets in Example 15.17 were given; however, it is not
known in advance which ones will produce independent vector fields. Numerous Lie
brackets may be needed, including some that are nested, such as [[h1, h2], h3]. The
maximum depth of nested Lie bracket operations is not known a priori. Therefore,
a systematic search must be performed (this can in fact be modeled as a discrete
planning problem) by starting with h1, . . ., hm and iteratively generating new,
independent vector fields using Lie brackets.

One popular approach is to generate the Philip Hall basis (or P. Hall basis) of
the Lie algebra L(△). The construction of the basis essentially follows breadth-
first search, in which the search depth is defined to be the number of nested levels
of bracket operations. The order (or depth) d of a Lie product is defined recursively
as follows. For the base case, let d(hi) = 1 for any of the system vector fields. For
any Lie product [φ1, φ2], let

d([φ1, φ2]) = d(φ1) + d(φ2). (15.108)

Thus, the order is just the nesting depth (plus one) of the Lie bracket operations.
For example, d([h1, h2]) = 2 and d([h1, [h2, h3]]) = 3.

In addition to standard breadth-first search, pruning should be automatically
performed to ensure that the skew symmetry and Jacobi identities are always
utilized to eliminate redundancy. A P. Hall basis is a sequence, PH = (φ1, φ2,
. . .), of Lie products for which:

1. The system vector fields hi are the first m elements of PH.

2. If d(φi) < d(φj), then i < j.

3. Each [φi, φj] ∈ PH if and only if: a) φi, φj ∈ PH and i < j, and b) either
φj = hi for some i or φj = [φl, φr] for some φl, φr ∈ PH such that l ≤ i.

It is shown in many algebra books (e.g., [861]) that this procedure results in a
basis for the Lie algebra L(△). Various algorithms for computing the basis are
evaluated in [299].

Example 15.18 (P. Hall Basis Up to Depth Three) The P. Hall basis sorts
the Lie products into the following sequence, which is obtained up to depth d = 3:

h1, h2, h3,
[h1, h2], [h2, h3], [h1, h3],
[h1, [h1, h2]], [h1, [h1, h3]], [h2, [h1, h2]], [h2, [h1, h3]],
[h2, [h2, h3]], [h3, [h1, h2]], [h3, [h1, h3]], [h3, [h2, h3]] .

So far, the only Lie product eliminated by the Jacobi identity is [h1, [h2, h3]] be-
cause

[h1, [h2, h3]] = [h2, [h1, h3]]− [h3, [h1, h2]]. (15.109)

908 S. M. LaValle: Planning Algorithms

Note that all of the Lie products given here may not be linearly independent vector
fields. For a particular system, linear independence tests should be performed to
delete any linearly dependent vector fields from the basis. �

When does the sequence PH terminate? Recall that dim(L(△)) can be no
greater than n, because Lx(△) ⊆ Tx(X). In other words, at every state x ∈ X,
the number of possible independent velocity vectors is no more than the dimension
of the tangent space at x. Therefore, PH can be terminated once n independent
vector fields are obtained because there is no possibility of finding more. For
some systems, there may be a depth k after which all Lie brackets are zero. Such
systems are called nilpotent of order k. This occurs, for example, if all components
of all vector fields are polynomials. If the system is not nilpotent, then achieving
termination may be difficult. It may be the case that dim(L(△)) is strictly less
than n, but this is usually not known in advance. It is difficult to determine
whether more Lie brackets are needed to increase the dimension or the limit has
already been reached.

15.4.3.4 Controllability of driftless systems

The controllability of a driftless control-affine system (15.53) can be characterized
using the Lie algebra rank condition (or LARC). Recall the definition of STLC
from Section 15.1.3. Assume that either U = Rm or U at least contains an open
set that contains the origin of Rm. The Chow-Rashevskii theorem [112, 156, 846]
states:

A driftless control-affine system, (15.53), is small-time locally controllable (STLC)
at a point x ∈ X if and only if dim(Lx(△)) = n, the dimension of X.

If the condition holds for every x ∈ X, then the whole system is STLC. In-
tegrability can also be expressed in terms of dim(L(△)). Assume as usual that
m < n. The three cases are:

1. dim(L(△)) = m the system is completely integrable;
2. m < dim(L(△)) < n the system is nonholonomic, but not STLC;
3. dim(L(△)) = n the system is nonholonomic and STLC.

(15.110)

Example 15.19 (Controllability Examples) The differential drive, nonholo-
nomic integrator, and the system from Example 15.17 are all STLC by the Chow-
Rashevskii theorem because dim(L(△)) = n. This implies that the state can be
changed in any direction, even though there are differential constraints. The state
can be made to follow arbitrarily close to any smooth curve in X. A method
that achieves this based on the Lie algebra is given in Section 15.5.1. The fact
that these systems are STLC assures the existence of an LPM that satisfies the

15.4. NONHOLONOMIC SYSTEM THEORY 909

topological property of Section 14.6.2. �

15.4.3.5 Handling Control-Affine Systems with Drift

Determining whether a system with drift (15.52), is STLC is substantially more
difficult. Imagine a mechanical system, such as a hovercraft, that is moving at
a high speed. Due to momentum, it is impossible from most states to move in
certain directions during an arbitrarily small interval of time. One can, however,
ask whether a system is STLC from a state x ∈ X for which h0(x) = 0. For
a mechanical system, this usually means that it starts at rest. If a system with
drift is STLC, this intuitively means that it can move in any direction by hovering
around states that are close to zero velocity for the mechanical system.

The Lie algebra techniques can be extended to determine controllability for sys-
tems with drift; however, the tools needed are far more complicated. See Chapter
7 of [156] for more complete coverage. Even if dim(L(△)) = n, it does not nec-
essarily imply that the system is STLC. It does at least imply that the system is
accessible, which motivates the definition given in Section 15.1.3. Thus, the set of
achievable velocities still has dimension n; however, motions in all directions may
not be possible due to drift. To obtain STLC, a sufficient condition is that the set
of possible values for ẋ contains an open set that contains the origin.

The following example clearly illustrates the main difficultly with establishing
whether a system with drift is STLC.

Example 15.20 (Accessible, Not STLC) The following simple system clearly
illustrates the difficulty caused by drift and was considered in [741]. Let X = R2,
U = R, and the state transition equation be

ẋ1 = u

ẋ2 = x2
1.

(15.111)

This system is clearly not controllable in any sense because x2 cannot be decreased.
The vector fields are h0(x) = [0 x2

1]
T and h1(x) = [1 0]T . The first independent

Lie bracket is
[h1, [h0, h1]] = [0 − 2]. (15.112)

The two-dimensional Lie algebra is

L(△) = span{h1, [h1, [h0, h1]]}, (15.113)

which implies that the system is accessible. It is not STLC, however, because the
bracket [h1, [h0, h1]] was constructed using h0 and was combined in an unfortunate
way. This bracket is indicating that changing x2 is possible; however, we already
know that it is not possible to decrease x2. Thus, some of the vector fields obtained
from Lie brackets that involve h0 may have directional constraints. �

910 S. M. LaValle: Planning Algorithms

In Example 15.20, [h1, [h0, h1]] was an example of a bad bracket [925] because
it obstructed controllability. A method of classifying brackets as good or bad has
been developed, and there exist theorems that imply whether a system with drift
is STLC by satisfying certain conditions on the good and bad brackets. Intuitively,
there must be enough good brackets to neutralize the obstructions imposed by the
bad brackets [156, 925].

15.5 Steering Methods for Nonholonomic Sys-

tems

This section briefly surveys some methods that solve the BVP for nonholonomic
systems. This can be considered as a motion planning problem under differential
constraints but in the absence of obstacles. For linear systems, optimal control
techniques can be used, as covered in Section 15.2.2. For mechanical systems
that are fully actuated, standard control techniques such as the acceleration-based
control model in (8.47) can be applied. If a mechanical system is underactuated,
then it is likely to be nonholonomic. As observed in Section 15.4, it is possible to
generate motions that appear at first to be prohibited. Suppose that by the Chow-
Rashevskii theorem, it is shown that a driftless system is STLC. This indicates
that it should be possible to design an LPM that successfully connects any pair
of initial and goal states. The next challenge is to find an action trajectory ũ
that actually causes xI to reach xG upon integration in (14.1). Many methods
in Chapter 14 could actually be used, but it is assumed that these would be too
slow. The methods in this section exploit the structure of the system (e.g, its
Lie algebra) and the fact that there are no obstacles to more efficiently solve the
planning problem.

15.5.1 Using the P. Hall Basis

The steering method presented in this section is due to Lafferriere and Sussmann
[574]. It is assumed here that a driftless control-affine system is given, in which
X is a Lie group, as introduced in Example 15.15. Furthermore, the system is
assumed to be STLC. The steering method sketched in this section follows from
the Lie algebra L(△). The idea is to apply piecewise-constant motion primitives
to move in directions given by the P. Hall basis. If the system is nilpotent, then
this method reaches the goal state exactly. Otherwise, it leads to an approximate
method that can be iterated to get arbitrarily close to the goal. Furthermore,
some systems are nilpotentizable by using feedback [442].

The main idea is to start with (15.53) and construct an extended system

ẋ =
s∑

i=1

bi(x)vi, (15.114)

15.5. STEERING METHODS FOR NONHOLONOMIC SYSTEMS 911

in which each vi is an action variable, and bi is a vector field in PH, the P. Hall
basis. For every i ≤ m, each term of (15.114) is bi(x)vi = hi(x)ui, which comes
from the original system. For i > m, each bi represents a Lie product in PH, and
vi is a fictitious action variable. It is called fictitious because the velocity given
by bi for i > m cannot necessarily be achieved by using a single action variable of
the system. In general, s may be larger than n because at each x ∈ X a different
subset of PH may be needed to obtain n independent vectors. Also, including
more basis elements simplifies some of the coming computations.

Example 15.21 (Extended System for the Nonholonomic Integrator) The
extended system for the nonholonomic integrator (15.83) is

ẋ1

ẋ2

ẋ3

 =

1
0

−x2

 v1 +

0
1
x1

 v2 +

0
0
2

 v3. (15.115)

The first two terms correspond to the original system. The last term arises from
the Lie bracket [h1, h2]. Only one fictitious action variable is needed because the
three P. Hall vector fields are independent at every x ∈ X.

It is straightforward to move this system along a grid-based path in R3. Mo-
tions in the x1 and x2 directions are obtained by applying v1 = u1 and v2 = u2,
respectively. To move the system in the x3 direction, the commutator motion
in (15.71) should be performed. This corresponds to applying v3. The steering
method described in this section yields a generalization of this approach. Higher
degree Lie products can be used, and motion in any direction can be achieved. �

Suppose some xI and xG are given. There are two phases to the steering
method:

1. Determine an action trajectory ṽ for the extended system, for which x(0) =
xI and x(tF) = xG for some tF > 0.

2. Convert ṽ into an action trajectory ũ that eliminates the fictitious variables
and uses the actual m action variables u1, . . . , um.

The first phase is straightforward. For the extended system, any velocity in the
tangent space, Tx(X), can be generated. Start with any smooth path τ : [0, 1] → X
such that τ(0) = xI and τ(1) = xG. The velocity τ̇(t) along the path τ is a velocity
vector in Tτ(t)(X) that can be expressed as a linear combination of the bi(τ(t))
vectors using linear algebra. The coefficients of this combination are the vi values.
The second phase is much more complicated and will be described shortly. If the
system is nilpotent, then ũ should bring the system precisely from xI to xG. By
the way it is constructed, it will also be clear how to refine ũ to come as close as
desired to the trajectory produced by ṽ.

912 S. M. LaValle: Planning Algorithms

Formal calculations The second phase is solved using formal algebraic com-
putations. This means that the particular vector fields, differentiation, manifolds,
and so on, can be ignored. The concepts involve pure algebraic manipulation.
To avoid confusion with previous definitions, the term formal will be added to
many coming definitions. Recall from Section 4.4.1 the formal definitions of the
algebra of polynomials (e.g., F[x1, . . . , xn]). Let A(y1, . . . , ym) denote the formal
noncommutative algebra11 of polynomials in the variables y1, . . ., ym. The yi here
are treated as symbols and have no other assumed properties (e.g, they are not
necessarily vector fields). When polynomials are multiplied in this algebra, no
simplifications can be made based on commutativity. The algebra can be con-
verted into a Lie algebra by defining a Lie bracket. For any two polynomials
p, q ∈ A(y1, . . . , ym), define the formal Lie bracket to be [p, q] = pq − qp. The
formal Lie bracket yields an equivalence relation on the algebra; this results in
a formal Lie algebra L(y1, . . . , ym) (there are many equivalent expressions for the
same elements of the algebra when the formal Lie bracket is applied). Nilpotent
versions of the formal algebra and formal Lie algebra can be made by forcing all
monomials of degree k + 1 to be zero. Let these be denoted by Ak(y1, . . . , ym)
and Lk(y1, . . . , ym), respectively. The P. Hall basis can be applied to obtain a
basis of the formal Lie algebra. Example 15.18 actually corresponds to the basis
of L3(h1, h2, h3) using formal calculations.

The exponential map The steering problem will be solved by performing cal-
culations on Lk(y1, . . . , ym). The formal power series of A(y1, . . . , ym) is the set of
all linear combinations of monomials, including those that have an infinite number
of terms. Similarly, the formal Lie series of L(y1, . . . , ym) can be defined.

The formal exponential map is defined for any p ∈ A(y1, . . . , ym) as

ep = 1 + p+
1

2!
p2 +

1

3!
p3 + · · · . (15.116)

In the nilpotent case, the formal exponential map is defined for any p ∈ Ak(y1, . . . , ym)
as

ep =
k∑

i=0

pi

i!
. (15.117)

The formal series is truncated because all terms with exponents larger than k
vanish.

A formal Lie group is constructed as

Gk(y1, . . . , ym) = {ep | p ∈ Lk(y1, . . . , ym)}. (15.118)

If the formal Lie algebra is not nilpotent, then a formal Lie group G(y1, . . . , ym)
can be defined as the set of all ep, in which p is represented using a formal Lie
series.

The following example is taken from [574]:

11Intuitively, being an algebra means that polynomials can be added and multiplied; for all of
the required axioms, see [469].

15.5. STEERING METHODS FOR NONHOLONOMIC SYSTEMS 913

Example 15.22 (Formal Lie Groups) Suppose that the generators x and y
are given. Some elements of the formal Lie group G(x, y) are

ex = I + x+ 1
2
x2 + 1

6
x3 + · · · , (15.119)

e[x,y] = I + [x, y] + 1
2
[x, y]2 + · · · , (15.120)

and

ex−y+3[x,y] = I + x− y + 3[x, y] + · · · , (15.121)

in which I is the formal Lie group identity. Some elements of the formal Lie group
G2(x, y) are

ex = I + x+ 1
2
x2, (15.122)

e[x,y] = I + [x, y], (15.123)

and

ex−y+3[x,y] = I + x− y + 3[x, y] + 1
2
(x− y)2. (15.124)

�

To be a group, the axioms given in Section 4.2.1 must be satisfied. The identity
is I, and associativity clearly follows from the series representations. Each ep

has an inverse, e−p, because epe−p = I. The only remaining axiom to satisfy is
closure. This is given by the Campbell-Baker-Hausdorff-Dynkin formula (or CBHD
formula), for which the first terms for any p, q ∈ G(y1, . . . , ym) are

exp(p) exp(q) = exp(p+q+ 1
2
[p, q]+ 1

12
[[p, q], q]− 1

12
[[p, q], p]+ 1

24
[p, [q, [p, q]]]+ · · ·),

(15.125)
in which exp(x) alternatively denotes ex for any x. The formula also applies to
Gk(y1, . . . , ym), but it becomes truncated into a finite series. This fact will be
utilized later. Note that epeq 6= ep+q, which differs from the standard definition of
exponentiation.

The CBHD formula is often expressed as

epeqe−p = exp

(∞∑

i=0

Adip q

i!

)

, (15.126)

in which Ad0
p q = q, and Adip q = [p,Adi−1

p q]. The operator Ad provides a compact
way to express some nested Lie bracket operations. Additional terms of (15.125)
can be obtained using (15.126).

The Chen-Fliess series The P. Hall basis from Section 15.4.3 applies in general
to any Lie algebra. Let B1, . . ., Bs denote a P. Hall basis for the nilpotent formal
Lie algebra Lk(y1, . . . , ym). An important theorem in the study of formal Lie

914 S. M. LaValle: Planning Algorithms

groups is that every S ∈ Gk(y1, . . . , ym) can be expressed in terms of the P. Hall
basis of its formal Lie algebra as

S = ezsBsezs−1Bs−1 · · · ez2B2ez1B1 , (15.127)

which is called the Chen-Fliess series. The zi are sometimes called the backward
P. Hall coordinates of S (there is a forward version, for which the terms in (15.127)
go from 1 to s, instead of s to 1).

Returning to the system vector fields Now the formal algebra concepts can
be applied to the steering problem. The variables become the system vector fields:
yi = hi for all i from 1 to m. For the P. Hall basis elements, each Bi becomes bi.
The Lie group becomes the state space X, and the Lie algebra is the familiar Lie
algebra over the vector fields, which was introduced in Section 15.4.3. Consider
how an element of the Lie group must evolve over time. This can be expressed
using the differential equation

Ṡ(t) = S(t)(v1b1 + v2b2 + · · ·+ vsbs), (15.128)

which is initialized with S(0) = I. Here, S can be interpreted as a matrix, which
may, for example, belong to SE(3).

The solution at every time t > 0 can be written using the Chen-Fliess series,
(15.127):

S(t) = ezs(t)bsezs−1(t)bs−1 · · · ez2(t)b2ez1(t)b1 . (15.129)

This indicates that S(t) can be obtained by integrating b1 for time z1(t), followed
by b2 for time z2(t), and so on until bs is integrated for time zs(t). Note that the
backward P. Hall coordinates now vary over time. If we determine how they evolve
over time, then the differential equation in (15.128) is solved.

The next step is to figure out how the backward P. Hall coordinates evolve.
Differentiating (15.129) with respect to time yields

Ṡ(t) =
s∑

j=1

ezsbs · · · ezj+1bj+1 żjbje
zjbj · · · ez1b1 . (15.130)

The Chen-Fliess-Sussmann equation There are now two expressions for Ṡ,
which are given by (15.128) and (15.130). By equating them, s equations of the
form

s∑

j=1

pj,kżj = vk (15.131)

are obtained, in which pj,k is a polynomial in zi variables. This makes use of the
series representation for each exponential; see Example 15.23.

The evolution of the backward P. Hall coordinates is therefore given by the
Chen-Fliess-Sussmann (CFS) equation:

ż = Q(z)v, (15.132)

15.5. STEERING METHODS FOR NONHOLONOMIC SYSTEMS 915

in which Q(z) is an s×smatrix, and z(0) = 0. The entries in Q(z) are polynomials;
hence, it is possible to integrate the system analytically to obtain expressions for
the zi(t).

A simple example is given, which was worked out in [299]:

Example 15.23 (The CFS Equation for the Nonholonomic Integrator) The
extended system for the nonholonomic integrator was given in (15.115). The dif-
ferential equation (15.128) for the Lie group is

Ṡ(t) = S(t)(v1b1 + v2b2 + v3b3), (15.133)

because s = 3.
There are two expressions for its solution. The Chen-Fliess series (15.129)

becomes
S(t) = ez3(t)b3ez2(t)b2ez1(t)b1 . (15.134)

The initial condition S(0) = I is satisfied if zi(0) = 0 for i from 1 to 3. The second
expression for Ṡ(t) is (15.130), which in the case of the nonholonomic integrator
becomes

Ṡ(t) =ż3(t)b3e
z3(t)b3ez2(t)b2ez1(t)b1+

ez3(t)b3 ż2(t)b2e
z2(t)b2ez1(t)b1+

ez3(t)b3ez2(t)b2 ż1(t)b1e
z1(t)b1 .

(15.135)

Note that
S−1(t) = e−z1(t)b1e−z2(t)b2e−z3(t)b3 . (15.136)

Equating (15.133) and (15.135) yields

S−1Ṡ = v1b1 + v2b2 + v3b3 =e−z1b1e−z2b2e−z3b3 ż3b3e
z3b3ez2b2ez1b1+

e−z1b1e−z2b2 ż2b2e
z2b2ez1b1+

e−z1b1 ż1b1e
z1b1 ,

(15.137)

in which the time dependencies have been suppressed to shorten the expression.
The formal Lie series expansions, appropriately for the exponentials, are now used.
For i = 1, 2,

ezibi = (I + zibi +
1
2
z2i b

2
i) (15.138)

and
e−zibi = (I − zibi − 1

2
z2i b

2
i). (15.139)

Also,
ez3b3 = (I + z3b3) (15.140)

and
e−z3b3 = (I − z3b3). (15.141)

The truncation is clearly visible in (15.140) and (15.141). The b23 terms are absent
because b3 is a polynomial of degree two, and its square would be of degree four.

916 S. M. LaValle: Planning Algorithms

Substitution into (15.137), performing noncommutative multiplication, and ap-
plying the Lie bracket definition yields

ż1b1 + ż2(b2 − z1b3) + ż3b3 = v1b1 + v2b2 + v3b3. (15.142)

Equating like terms yields the Chen-Fliess-Sussmann equation

ż1 = v1

ż2 = v2

ż3 = v3 + z1v2.

(15.143)

Recall that ṽ is given. By integrating (15.143) from z(0) = 0, the backward P.
Hall coordinate trajectory z̃ is obtained. �

Using the original action variables Once the CFS equation has been deter-
mined, the problem is almost solved. The action trajectory ṽ was determined from
the given state trajectory ṽ and the backward P. Hall coordinate trajectory z̃ is
determined by (15.143). The only remaining problem is that the action variables
from vm+1 to vs are fictitious because their associated vector fields are not part of
the system. They were instead obtained from Lie bracket operations. When these
are applied, they interfere with each other because many of them may try to use
the same ui variables from the original system at the same time.

The CBHD formula is used to determine the solution in terms of the system
action variables u1, . . ., um. The differential equation now becomes

Ṡ(t) = S(t)(u1h1 + u2h2 + · · ·+ umhm), (15.144)

which is initialized with S(0) = I and uses the original system instead of the
extended system.

When applying vector fields over time, the CBHD formula becomes

exp(tf) exp(tg) =

exp(tf + tg +
t2

2
[f, g] +

t3

12
[[f, g], g]− t3

12
[[f, g], f] +

t4

24
[f, [g, [f, g]]] + · · ·).

(15.145)

If the system is nilpotent, then this series is truncated, and the exact effect of
sequentially combining constant motion primitives can be determined. This leads
to a procedure for determining a finite sequence of constant motion primitives that
generate a motion in the same direction as prescribed by the extended system and
the action trajectory ṽ.

15.5. STEERING METHODS FOR NONHOLONOMIC SYSTEMS 917

15.5.2 Using Sinusoidal Action Trajectories

The steering method presented in this section is based on initial work by Brockett
[142] and a substantial generalization of it by Murray and Sastry [727]. The
approach applies to several classes of systems for which the growth of independent
vector fields occurs as quickly as possible. This means that when the P. Hall
basis is constructed, no elements need to be removed due to linear dependency
on previous Lie products or system vector fields. For these systems, the approach
applies sinusoids of integrally related frequencies to some action variables. This
changes some state variables while others are automatically fixed. For more details
beyond the presentation here, see [596, 725, 727, 846].

15.5.2.1 Steering the nonholonomic integrator

The main idea of the method can be clearly illustrated for the nonholonomic
integrator,

ẋ1 = u1

ẋ2 = u2

ẋ3 = x1u2 − x2u1,

(15.146)

which was considered throughout Section 15.5.1. This case will be explained in
detail, and the methods obtained by generalizing the principles will subsequently
be stated. The presentation given here is based on [727, 846].

As was previously indicated, growing independent vector fields as quickly as
possible is important. For the nonholonomic integrator, [h1, h2], is linearly inde-
pendent of h1 and h2, as observed in Example 15.12; thus, it satisfies this property.
Consider steering the system from some xI = x(0) to some xG = x(1) while opti-
mizing the cost functional

∫ 1

0

(
u1(t)

2 + u2(t)
2
)
dt. (15.147)

The problem can be solved by using the constrained Lagrangian formulation,
which was given in Section 13.4.3. The first step is to eliminate the u variables.
From (15.146), the cost can be expressed in terms of ẋ1 and ẋ2 by using ẋ1 = u1

and ẋ2 = u2. The third equation in (15.146) can be written as

ẋ3 = x1ẋ2 − x2ẋ1 (15.148)

and will be interpreted as a constraint on the Lagrangian, which is combined
using a (scalar) Lagrange multiplier as explained in Section 13.4.3. Define the
Lagrangian as

L(x, ẋ) = (ẋ2
1 + ẋ2

2) + λ
(
ẋ3 − x1ẋ2 + x2ẋ1

)
, (15.149)

in which the first term comes from the integrand of (15.147), and the second term
comes from (15.148).

918 S. M. LaValle: Planning Algorithms

The Euler-Lagrange equation (13.118) yields

ẍ1 + λẋ2 = 0

ẍ2 − λẋ1 = 0

λ̇ = 0.

(15.150)

Note that λ̇ = 0 implies that λ(t) is constant for all time. To obtain a differential
equation that characterizes the optimal action trajectory, use the fact that for
i = 1, 2, ẋi = ui and ẍi = u̇i. This yields the equations u̇1 = −λu̇2 and u̇2 = λu̇1.
These can be represented as second-order linear differential equations. Based on
its roots, the solution is

u1(t) = u1(0) cosλt− u2(0) sinλt

u2(t) = u1(0) sinλt+ u2(0) cosλt.
(15.151)

Given initial and goal states, the optimal action trajectory is found by determining
u1(0), u2(0), and λ. Suppose that xI = x(0) = (0, 0, 0) and xG = x(1) = (0, 0, a)
for some a ∈ R. Other cases can be obtained by applying transformations in
SE(3) to the solution.

The state trajectories for x1 and x2 can be obtained by integration of (15.151)
because ui = ẋi for i = 1 and i = 2. Starting from x1(0) = x2(0) = 0, this yields

x1(t) =
1

λ

(
u1(0) sinλt+ u2(0) cosλt− u2(0)

)

x2(t) =
1

λ

(
− u1(0) cosλt+ u2(0) sinλt+ u1(0)

)
.

(15.152)

To maintain the constraint that x1(1) = x2(1) = 0, λ must be chosen as λ = 2kπ
for some integer n. Integration of ẋ3 yields

x3(t) =

∫ 1

0

(
x1u2 − x2u1

)
dt =

1

λ

(
u2
1(0) + u2

2(0)
)
= a. (15.153)

The cost is ∫ 1

0

(
u2
1(t) + u2

2(t)
)
dt = u2

1(0) + u2
2(0) = λa. (15.154)

The minimum cost is therefore achieved for k = −1, which yields λ = 2π and
‖u‖ = 2πa. This fixes the magnitude of u(0), but any direction may be chosen.

The steering problem can be solved in two phases:

1. Apply any action trajectory to steer x1 and x2 to their desired values while
neglecting to consider x3.

2. Apply the solution just developed to steer x3 to the goal while x1 and x2

return to their values obtained in the first phase.

This idea can be generalized to other systems.

15.5. STEERING METHODS FOR NONHOLONOMIC SYSTEMS 919

15.5.2.2 First-order controllable systems

The approach developed for the nonholonomic integrator generalizes to systems of
the form

ẋi = ui for i from 1 to m

ẋij = xiuj − xjui for all i, j so that i < j and 1 ≤ j ≤ m (15.155)

and

ẋi = ui for i from 1 to m

ẋij = xiuj for all i, j such that i < j and 1 ≤ j ≤ m. (15.156)

Brockett showed in [142] that for such first-order controllable systems, the optimal
action trajectory is obtained by applying a sum of sinusoids with integrally related
frequencies for each of the m action variables. If m is even, then the trajectory for
each variable is a sum of m/2 sinusoids at frequencies 2π, 2 · 2π, . . ., (m/2) · 2π.
If m is odd, there are instead (m − 1)/2 sinusoids; the sequence of frequencies
remains the same. Suppose m is even (the odd case is similar). Each action is
selected as

ui =

m/2
∑

k=1

aik sin 2πkt+ bik cos 2πkt. (15.157)

The other state variables evolve as

xij = xij(0) +
1

2

m/2
∑

k=1

1

k
(ajkbik − aikbjk), (15.158)

which provides a constraint similar to (15.153). The periodic behavior of these
action trajectories causes the xi variables to return to their original values while
steering the xij to their desired values. In a sense this is a vector-based general-
ization in which the scalar case was the nonholonomic integrator.

Once again, a two-phase steering approach is obtained:

1. Apply any action trajectory that brings every xi to its goal value. The
evolution of the xij states is ignored in this stage.

2. Apply sinusoids of integrally related frequencies to the action variables.
Choose each ui(0) so that xij reaches its goal value. In this stage, the xi
variables are ignored because they will return to their values obtained in the
first stage.

This method has been generalized even further to second-order controllable
systems:

ẋi = ui for i from 1 to m

ẋij = xiuj for all i, j such that i < j and 1 ≤ j ≤ m (15.159)

ẋijk = xijuk for all (i, j, k) ∈ J ,

920 S. M. LaValle: Planning Algorithms

in which J is the set of all unique triples formed from distinct i, j, k ∈ {1, . . . ,m}
and removing unnecessary permutations due to the Jacobi identity for Lie brackets.
For this problem, a three-phase steering method can be developed by using ideas
similar to the first-order controllable case. The first phase determines xi, the
second handles xij , and the third resolves xijk. See [727, 846] for more details.

15.5.2.3 Chained-form systems

Example 15.17 considered a special case of a chained-form system. The system in
(15.102) can be generalized to any n as

ẋ1 = u1 ẋ4 = x3u1

ẋ2 = u2
... (15.160)

ẋ3 = x2u1 ẋn = xn−1u1.

This can be considered as a system with higher order controllability. For these
systems, a multi-phase approach is obtained:

1. Apply any action trajectory for u1 and u2 that brings x1 and x2 to their goal
values. The evolution of the other states is ignored in this stage.

2. This phase is repeated for each k from 3 to n. Steer xk to its desired value
by applying

u1 = a sin 2πkt and u2 = b cos 2πkt, (15.161)

in which a and b are chosen to satisfy the constraint

xk(1) = xk(0) +
(a

4π

)(k−2) b

(k − 2)!
. (15.162)

Each execution of this phase causes the previous k − 1 state variables to
return to their previous values.

For a proof of the correctness of the second phase, and more information in
general, see [727, 846]. It may appear that very few systems fit the forms given
in this section; however, it is sometimes possible to transform systems to fit this
form. Recall that the original simple car model in (13.15) was simplified to (15.54).
Transformation methods for putting systems into chained form have been devel-
oped. For systems that still cannot be put in this form, Fourier techniques can
be used to obtain approximate steering methods that are similar in spirit to the
methods in this section. When the chained-form system is expressed using Pfaf-
fian constraints, the result is often referred to as the Goursat normal form. The
method can be extended even further to multi-chained-form systems.

15.5. STEERING METHODS FOR NONHOLONOMIC SYSTEMS 921

15.5.3 Other Steering Methods

The steering methods presented so far are perhaps the most widely known; how-
ever, several other alternatives exist. Most of these follow in the spirit of the
methods in Sections 15.5.1 and 15.5.2 by exploiting the properties of a specific
class of systems. Some alternatives are briefly surveyed here. This is an active
field of research; it is likely that new methods will be developed in the coming
years.

Differentially flat systems Differential flatness has become an important con-
cept in the development of steering methods. It was introduced by Fliess, Lévine,
Martin, and Rouchon in [344]; see also [726]. Intuitively, a system is said to be
differentially flat if a set of variables called flat outputs can be found for which
all states and actions can be determined from them without integration. This
specifically means that for a system ẋ = f(x, u) with X = Rn and U = Rm, there
exist flat outputs of the form

y = h(x, u, u̇, . . . , u(k)) (15.163)

such that there exist functions g and g′ for which

x = g(y, ẏ, . . . , y(j)) (15.164)

and
u = g′(y, ẏ, . . . , y(j)). (15.165)

One example is the simple car pulling trailers, expressed in (13.19); the flat outputs
are the position in W = R2 of the last trailer. This property was used for motion
planning in [578]. Recent works on the steering of differentially flat systems include
[578, 813, 833].

Decoupling vector fields For mechanical systems in which dynamics is con-
sidered, the steering problem becomes complicated by drift. One recent approach
is based on establishing that a system is kinematically controllable, which means
that the system is STLC on the C-space, if traversed using trajectories that start
and stop at zero velocity states [157]. The method finds decoupling vector fields on
the C-space. Any path that is the integral curve of a decoupling vector field in the
C-space is executable by the full system with dynamics. If a mechanical system
admits such vector fields, then it was proved in [157] that a steering method for C
can be lifted into one for X, the phase space of the mechanical system. This idea
was applied to generate an efficient LPM in an RRT planner in [224].

Averaging methods By decomposing the state trajectory into a low-frequency
part that accounts for the long-range evolution of states and a high-frequency part
that accounts for small oscillations over short ranges, averaging methods enable
perturbations to be systematically made to state trajectories. This yields other
steering methods based on sinusoidal action trajectories [112, 420, 623, 624].

922 S. M. LaValle: Planning Algorithms

Variational techniques As might be expected, the general-purpose gradient-
based optimization techniques of Section 14.7 can be applied to the steering of
nonholonomic systems. Such methods are based on Newton iterations on the space
of possible state trajectories. This leads to a gradient descent that arrives at a
local optimum while satisfying the differential constraints. For details on applying
such techniques to steer nonholonomic systems, see [276, 334, 596, 901, 926].

Pontryagin’s minimum principle The minimum principle can be helpful in
developing a steering method. Due to the close connection between the Euler-
Lagrange equation and Hamilton’s equations, as mentioned in Section 13.4.4, this
should not be surprising. The Euler-Lagrange equation was used in Section 15.5.2
to determine an optimal steering method for the nonholonomic integrator. A
steering methodology based on the minimum principle is described in [846]. The
optimal curves of Section 15.3 actually represent steering methods obtained from
the minimum principle. Unfortunately, for the vast majority of problems, numer-
ical techniques are needed to solve the resulting differential equations. It is gener-
ally expected that techniques developed for specific classes, such as the nilpotent,
chained-form, or differentially flat systems, perform much better than general-
purpose numerical techniques applied to the Euler-Lagrange equation, Hamilton’s
equations or Pontryagin’s minimum principle.

Dynamic programming The numerical dynamic programming approach of
Section 14.5 can be applied to provide optimal steering for virtual any system. To
apply it here, the obstacle region Xfree is empty. The main drawback, however,
is that the computational cost is usually too high, particularly if the dimension of
X is high. On the other hand, it applies in a very general setting, and Lie group
symmetries can be used to apply precomputed trajectories from any initial state.
This is certainly a viable approach with systems for which the state space is SE(2)
or SO(3).

Further Reading

The basic stability and controllability concepts from Section 15.1 appear in many con-
trol textbooks, especially ones that specialize in nonlinear control; see [523, 846] for an
introduction to nonlinear control. More advanced concepts appear in [156]. For illustra-
tions of many convergence properties in vector fields, see [44]. For linear system theory,
see [192]. Brockett’s condition and its generalization appeared in [143, 996]. For more
on stabilization and feedback control of nonholonomic systems, see [156, 846, 964]. For
Lyapunov-based design for feedback control, see [278].

For further reading on the Hamilton-Jacobi-Bellman equation, see [85, 95, 492, 789,
912]. For numerical approaches to its solution (aside from value iteration), see [2, 253,
707]. Linear-quadratic problems are covered in [28, 570]. Pontryagin’s original works
provide an unusually clear explanation of the minimum principle [801]. For other sources,
see [95, 410, 789]. A generalization that incorporates state-space constraints appears in
[927].

15.5. STEERING METHODS FOR NONHOLONOMIC SYSTEMS 923

Works on which Section 15.3 is based are [64, 127, 211, 294, 814, 903, 904, 923].
Optimal curves have been partially characterized in other cases; see [227, 903]. One
complication is that optimal curves often involve infinite switching [370, 1000]. There is
also interest in nonoptimal curves that nevertheless have good properties, especially for
use as a local planning method for car-like robots [31, 358, 520, 794, 848]. For feedback
control of car-like robots, see [112, 663].

For further reading on nonholonomic system theory beyond Section 15.4, there are
many excellent sources: [83, 112, 113, 156, 478, 725, 741, 846]. A generalization of
the Chow-Rashevskii theorem to hybrid systems is presented in [724]. Controllability
of a car pulling trailers is studied in [594]. Controllability of a planar hovercraft with
thrusters is considered in [669]. The term holonomic is formed from two Greek words
meaning “integrable” and “law” [135].

Section 15.5 is based mainly on the steering methods in [574] (Section 15.5.1) and
[142, 727] (Section 15.5.2). The method of Section 15.5.1 is extended to time-varying
systems in [299]. A multi-rate version is developed in [713]. In [480], it was improved
by using a Lyndon basis, as opposed to the P. Hall basis. Another steering method that
involves series appears in [154, 155]. For more on chained-form systems, see [858, 902].
For a variant that uses polynomials and the Goursat normal form, instead of sinusoids,
see [846]. For other steering methods, see the references suggested in Section 15.5.3.

Exercises

1. Characterize the stability at (0, 0) of the vector field on X = R2, given by ẋ1 = x2
and ẋ2 = −x22 − x1. Use the Lyapunov function φ(x1, x2) = x21 + x22.

2. Repeat Example 15.4, but instead use the cost term l(x, u) = u2.

3. Repeat Example 15.4, but instead for a triple integrator q(3) = u and U = [−1, 1].

4. Determine the precise conditions under which each of the four cases of Example
15.4 occurs. Define a feedback motion plan that causes time-optimal motions.

5. Note that some of the six optimal words for the Dubins car do not appear for the
Reeds-Shepp car. For each of these, illustrate why it does not appear.

6. Retrace the steps of the Taylor series argument for deriving the Lie bracket in
Section 15.4.2. Arrive at (15.81) by showing all steps in detail (smaller steps are
skipped in Section 15.4.2).

7. Determine whether the following system is nonholonomic and STLC:

q̇1 = u1 q̇4 = q22u1

q̇2 = u2 q̇5 = q21u2 (15.166)

q̇3 = q1u2 − q2u1.

8. Prove that linear systems ẋ = Ax+Bu for constant matrices A and B cannot be
nonholonomic.

924 S. M. LaValle: Planning Algorithms

9. Determine whether the following system is nonholonomic and STLC:

ẋ
ẏ

θ̇

ψ̇

=

cos θ
sin θ
0

− sinψ

u1 +

0
0
1
1

u2. (15.167)

10. Using the commutator motion and constant actions for the differential drive, de-
velop a lattice over its configuration space.

11. Consider a smooth nonlinear system that has only one action variable and an n-
dimensional state space for n > 1. Are such systems always completely integrable,
always nonholonomic, or is either possible?

12. Generalize Example 15.17 to Rn with two action variables. Determine whether
the system is STLC for any n > 5.

13. Show that the vector cross product on R3 indeed produces a Lie algebra when
used as a bracket operation.

14. Derive the CFS equation for the following system:

q̇1 = u1 q̇3 = q1u2 − q2u1

q̇2 = u2 q̇4 = q22u1. (15.168)

Implementations

15. Implement software that computes the P. Hall basis up to any desired order (this
is only symbolic computation; the Lie brackets are not expanded).

16. Implement software that displays the appropriate optimal path for the Dubins
car, between any given qI and qG.

17. Apply the planning algorithm in Section 14.4.2 to numerically determine the Du-
bins curves. Use Dijkstra’s algorithm for the search, and use a high-resolution
grid. Can your software obtain the same set of curves as Dubins?

18. Experiment with using Dubins curves as a local planning method (LPM) and met-
ric in an RRT-based planning algorithm. Does using the curves improve execution
time? Do they lead to better solutions?

